Skip to main content
Log in

Biomarkers of Epileptogenesis: The Focus on Glia and Cognitive Dysfunctions

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The need to find measures that reliably predict the onset of epilepsy after injurious events or how the patient will respond to anti-seizure drugs led to intensive pre-clinical and clinical research to discover non-invasive biomarkers that could increase the sensitivity of existing clinical indicators. The use of experimental models of epileptogenesis and of drug-resistance is instrumental to select the most promising approaches to explore such biomarkers in the pre-clinical setting for further clinical validation. The approaches most frequently used to find clinically useful biomarkers of epileptogenesis include molecular brain imaging, EEG signal analysis and the measure of soluble molecules in biofluids which may reflect brain intrinsic events involved in epilepsy development. Among those, we focused our attention on proton magnetic resonance imaging (1H-MRS)-based analysis of astrocytic activation, and related blood biomarkers, since this cell population appears to be pivotally involved in various epileptogenesis processes triggered by differing insults. Moreover, we also investigated behavioral biomarkers by focusing on cognitive dysfunctions since this deficit represents a typical co-morbidity in epilepsy which may manifest even before the onset of spontaneous seizures. In this review article, we will report our recently published evidence supporting the utility of measuring astrocyte activation, the soluble molecules they release, and the associated cognitive deficits during epileptogenesis for early stratification of animals developing epilepsy. We will discuss the potential clinical translation of our findings for enriching the patient population in preventive clinical trials designed to study anti-epileptogenic treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

This figure has been adapted from original figures published in Ref. [39]

Fig. 2

Similar content being viewed by others

References

  1. Pitkanen A, Engel J (2014) Past and present definitions of epileptogenesis and its biomarkers. Neurotherapeutics 11:231–241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gorter JA, van Vliet EA, Aronica E et al (2006) Potential new antiepileptogenic targets indicated by microarray analysis in a rat model for temporal lobe epilepsy. J Neurosci 26:11083–11110

    Article  CAS  PubMed  Google Scholar 

  3. Pitkanen A, Lukasiuk K (2011) Molecular biomarkers of epileptogenesis. Biomark Med 5:629–633

    Article  PubMed  CAS  Google Scholar 

  4. Pitkanen A, Lukasiuk K (2011) Mechanisms of epileptogenesis and potential treatment targets. Lancet Neurol 10:173–186

    Article  PubMed  Google Scholar 

  5. Henshall DC, Hamer HM, Pasterkamp RJ et al (2016) MicroRNAs in epilepsy: pathophysiology and clinical utility. Lancet Neurol 15:1368–1376

    Article  CAS  PubMed  Google Scholar 

  6. Depaulis A, David O, Charpier S (2016) The genetic absence epilepsy rat from Strasbourg as a model to decipher the neuronal and network mechanisms of generalized idiopathic epilepsies. J Neurosci Methods 260:159–174

    Article  PubMed  Google Scholar 

  7. Pennacchio LA, Bouley DM, Higgins KM et al (1998) Progressive ataxia, myoclonic epilepsy and cerebellar apoptosis in cystatin B-deficient mice. Nat Genet 20:251–258

    Article  CAS  PubMed  Google Scholar 

  8. Oakley JC, Kalume F, Catterall WA (2011) Insights into pathophysiology and therapy from a mouse model of Dravet syndrome. Epilepsia 52(Suppl 2):59–61

    Article  PubMed  PubMed Central  Google Scholar 

  9. Devinsky O, Vezzani A, Najjar S et al (2013) Glia and epilepsy: excitability and inflammation. Trends Neurosci 36:174–184

    Article  CAS  PubMed  Google Scholar 

  10. Robel S, Buckingham SC, Boni JL et al (2015) Reactive astrogliosis causes the development of spontaneous seizures. J Neurosci 35:3330–3345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ortinski PI, Dong J, Mungenast A et al (2010) Selective induction of astrocytic gliosis generates deficits in neuronal inhibition. Nat Neurosci 13:584–591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wang N, Mi X, Gao B et al (2015) Minocycline inhibits brain inflammation and attenuates spontaneous recurrent seizures following pilocarpine-induced status epilepticus. Neuroscience 287:144–156

    Article  CAS  PubMed  Google Scholar 

  13. Ito S, Ogiwara I, Yamada K et al (2013) Mouse with Nav1.1 haploinsufficiency, a model for Dravet syndrome, exhibits lowered sociability and learning impairment. Neurobiol Dis 49:29–40

    Article  CAS  PubMed  Google Scholar 

  14. Marques-Carneiro JE, Faure J-B, Barbelivien A et al (2016) Subtle alterations in memory systems and normal visual attention in the GAERS model of absence epilepsy. Neuroscience 316:389–401

    Article  CAS  PubMed  Google Scholar 

  15. Kleen JK, Scott RC, Lenck-Santini PP, Holmes GL (2012) Cognitive and Behavioral Co-Morbidities of Epilepsy [Internet]. Jaspers Basic Mech. Epilepsies 4th edition

  16. Pitkanen A, McIntosh TK (2006) Animal models of post-traumatic epilepsy. J Neurotrauma 23:241–261

    Article  PubMed  Google Scholar 

  17. Pitkänen A, Roivainen R, Lukasiuk K (2015) Development of epilepsy after ischaemic stroke. Lancet Neurol 15:185–197

    Article  PubMed  Google Scholar 

  18. Löscher W (2011) Critical review of current animal models of seizures and epilepsy used in the discovery and development of new antiepileptic drugs. Seizure 20:359–368

    Article  PubMed  Google Scholar 

  19. Sofroniew MV, Vinters HV (2010) Astrocytes: biology and pathology. Acta Neuropathol 119:7–35

    Article  PubMed  Google Scholar 

  20. Farina C, Aloisi F, Meinl E (2007) Astrocytes are active players in cerebral innate immunity. Trends Immunol 28:138–145

    Article  CAS  PubMed  Google Scholar 

  21. Lehnardt S (2010) Innate immunity and neuroinflammation in the CNS: the role of microglia in Toll-like receptor-mediated neuronal injury. Glia 58:253–263

    PubMed  Google Scholar 

  22. Seifert G, Schilling K, Steinhauser C (2006) Astrocyte dysfunction in neurological disorders: a molecular perspective. Nat Rev Neurosci 7:194–206

    Article  CAS  PubMed  Google Scholar 

  23. Aronica E, Ravizza T, Zurolo E, Vezzani A (2012) Astrocyte immune response in epilepsy. Glia 60:1258–1268

    Article  PubMed  Google Scholar 

  24. Boer K, Spliet WG, van Rijen PC et al (2006) Evidence of activated microglia in focal cortical dysplasia. J Neuroimmunol 173:188–195

    Article  CAS  PubMed  Google Scholar 

  25. Ravizza T, Boer K, Redeker S et al (2006) The IL-1beta system in epilepsy-associated malformations of cortical development. Neurobiol Dis 24:128–143

    Article  CAS  PubMed  Google Scholar 

  26. Brand A, Richter-Landsberg C, Leibfritz D (1993) Multinuclear NMR studies on the energy metabolism of glial and neuronal cells. Dev Neurosci 15:289–298

    Article  CAS  PubMed  Google Scholar 

  27. Kumlien E, Bergstrom M, Lilja A et al (1995) Positron emission tomography with [11C] deuterium-deprenyl in temporal lobe epilepsy. Epilepsia 36:712–721

    Article  CAS  PubMed  Google Scholar 

  28. Kumlien E, Hilton-Brown P, Spannare B, Gillberg PG (1992) In vitro quantitative autoradiography of [3H]-L-deprenyl and [3H]-PK 11195 binding sites in human epileptic hippocampus. Epilepsia 33:610–617

    Article  CAS  PubMed  Google Scholar 

  29. Kumlien E, Nilsson A, Hagberg G et al (2001) PET with 11C-deuterium-deprenyl and 18F-FDG in focal epilepsy. Acta Neurol Scand 103:360–366

    Article  CAS  PubMed  Google Scholar 

  30. Gershen LD, Zanotti-Fregonara P, Dustin IH et al (2015) Neuroinflammation in temporal lobe epilepsy measured using positron emission tomographic imaging of translocator protein. JAMA Neurol 72:882–888

    Article  PubMed  PubMed Central  Google Scholar 

  31. Butler T, Li Y, Tsui W et al (2016) Transient and chronic seizure-induced inflammation in human focal epilepsy. Epilepsia 57:e191–e194

    Article  PubMed  Google Scholar 

  32. Hirvonen J, Kreisl WC, Fujita M et al (2012) Increased in vivo expression of an inflammatory marker in temporal lobe epilepsy. J Nucl Med 53:234–240

    Article  CAS  PubMed  Google Scholar 

  33. Haik S, Galanaud D, Linguraru MG et al (2008) In vivo detection of thalamic gliosis: a pathoradiologic demonstration in familial fatal insomnia. Arch Neurol 65:545–549

    Article  PubMed  Google Scholar 

  34. Mader I, Rauer S, Gall P, Klose U (2008) (1)H MR spectroscopy of inflammation, infection and ischemia of the brain. Eur J Radiol 67:250–257

    Article  PubMed  Google Scholar 

  35. Mizuno S, Takahashi Y, Kato Z et al (2000) Magnetic resonance spectroscopy of tubers in patients with tuberous sclerosis. Acta Neurol Scand 102:175–178

    Article  CAS  PubMed  Google Scholar 

  36. Turkdogan-Sozuer D, Ozek MM, Sav A et al (2000) Serial MRI and MRS studies with unusual findings in Rasmussen’s encephalitis. Eur Radiol 10:962–966

    Article  CAS  PubMed  Google Scholar 

  37. Hammen T, Hildebrandt M, Stadlbauer A et al (2008) Non-invasive detection of hippocampal sclerosis: correlation between metabolite alterations detected by (1)H-MRS and neuropathology. NMR Biomed 21:545–552

    Article  CAS  PubMed  Google Scholar 

  38. Filibian M, Frasca A, Maggioni D et al (2012) In vivo imaging of glia activation using 1H-magnetic resonance spectroscopy to detect putative biomarkers of tissue epileptogenicity. Epilepsia 53:1907–1916

    Article  CAS  PubMed  Google Scholar 

  39. Pascente R, Frigerio F, Rizzi M et al (2016) Cognitive deficits and brain myo-Inositol are early biomarkers of epileptogenesis in a rat model of epilepsy. Neurobiol Dis 93:146–155

    Article  CAS  PubMed  Google Scholar 

  40. Ravizza T, Gagliardi B, Noé F et al (2008) Innate and adaptive immunity during epileptogenesis and spontaneous seizures: evidence from experimental models and human temporal lobe epilepsy. Neurobiol Dis 29:142–160

    Article  CAS  PubMed  Google Scholar 

  41. Klitgaard H, Matagne A, Vanneste-Goemaere J, Margineanu D-G (2002) Pilocarpine-induced epileptogenesis in the rat: impact of initial duration of status epilepticus on electrophysiological and neuropathological alterations. Epilepsy Res 51:93–107

    Article  CAS  PubMed  Google Scholar 

  42. Amhaoul H, Hamaide J, Bertoglio D et al (2015) Brain inflammation in a chronic epilepsy model: evolving pattern of the translocation protein during epileptogenesis. Neurobiol Dis 82:526–539

    Article  CAS  PubMed  Google Scholar 

  43. Brackhan M, Bascunana P, Postema JM et al (2016) Serial quantitative TSPO-targeted PET reveals peak microglial activation up to 2 weeks after an epileptogenic brain insult. J Nucl Med 57:1302–1308

    Article  PubMed  Google Scholar 

  44. Wu Y, Pearce PS, Rapuano A et al (2015) Metabolic changes in early poststatus epilepticus measured by MR spectroscopy in rats. J Cereb Blood Flow Metab 35:1862–1870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Shapiro LA, Wang L, Ribak CE (2008) Rapid astrocyte and microglial activation following pilocarpine-induced seizures in rats. Epilepsia 49(Suppl 2):33–41

    Article  CAS  PubMed  Google Scholar 

  46. Hanisch UK, Kettenmann H (2007) Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci 10:1387–1394

    Article  CAS  PubMed  Google Scholar 

  47. Sankar R, Shin D, Mazarati AM et al (2000) Epileptogenesis after status epilepticus reflects age- and model-dependent plasticity. Ann Neurol 48:580–589

    Article  CAS  PubMed  Google Scholar 

  48. Roch C, Leroy C, Nehlig A, Namer IJ (2002) Magnetic resonance imaging in the study of the lithium-pilocarpine model of temporal lobe epilepsy in adult rats. Epilepsia 43:325–335

    Article  PubMed  Google Scholar 

  49. Leroy C, Pierre K, Simpson IA et al (2011) Temporal changes in mRNA expression of the brain nutrient transporters in the lithium-pilocarpine model of epilepsy in the immature and adult rat. Neurobiol Dis 43:588–597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Dubé C, Boyet S, Marescaux C, Nehlig A (2001) Relationship between neuronal loss and interictal glucose metabolism during the chronic phase of the lithium-pilocarpine model of epilepsy in the immature and adult rat. Exp Neurol 167:227–241

    Article  PubMed  CAS  Google Scholar 

  51. Sayin U, Sutula TP, Stafstrom CE (2004) Seizures in the developing brain cause adverse long-term effects on spatial learning and anxiety. Epilepsia 45:1539–1548

    Article  PubMed  Google Scholar 

  52. Chauviere L, Rafrafi N, Thinus-Blanc C et al (2009) Early deficits in spatial memory and theta rhythm in experimental temporal lobe epilepsy. J Neurosci 29:5402–5410

    Article  CAS  PubMed  Google Scholar 

  53. Hort J, Brozek G, Komarek V et al (2000) Interstrain differences in cognitive functions in rats in relation to status epilepticus. Behav Brain Res 112:77–83

    Article  CAS  PubMed  Google Scholar 

  54. Kubova H, Mares P, Suchomelova L et al (2004) Status epilepticus in immature rats leads to behavioural and cognitive impairment and epileptogenesis. Eur J Neurosci 19:3255–3265

    Article  PubMed  Google Scholar 

  55. Cilio MR, Sogawa Y, Cha BH et al (2003) Long-term effects of status epilepticus in the immature brain are specific for age and model. Epilepsia 44:518–528

    Article  PubMed  Google Scholar 

  56. Liu Z, Gatt A, Werner SJ et al (1994) Long-term behavioral deficits following pilocarpine seizures in immature rats. Epilepsy Res 19:191–204

    Article  CAS  PubMed  Google Scholar 

  57. Hermann B, Jones J, Sheth R et al (2006) Children with new-onset epilepsy: neuropsychological status and brain structure. Brain 129:2609–2619

    Article  PubMed  Google Scholar 

  58. Oostrom KJ, Smeets-Schouten A, Kruitwagen CL et al (2003) Not only a matter of epilepsy: early problems of cognition and behavior in children with “epilepsy only”—a prospective, longitudinal, controlled study starting at diagnosis. Pediatrics 112:1338–1344

    Article  PubMed  Google Scholar 

  59. Witt JA, Helmstaedter C (2015) Cognition in the early stages of adult epilepsy. Seizure 26:65–68

    Article  PubMed  Google Scholar 

  60. Austin JK, Harezlak J, Dunn DW et al (2001) Behavior problems in children before first recognized seizures. Pediatrics 107:115–122

    Article  CAS  PubMed  Google Scholar 

  61. Berg AT, Smith SN, Frobish D et al (2005) Special education needs of children with newly diagnosed epilepsy. Dev Med Child Neurol 47:749–753

    Article  PubMed  Google Scholar 

  62. Barkas L, Redhead E, Taylor M et al (2012) Fluoxetine restores spatial learning but not accelerated forgetting in mesial temporal lobe epilepsy. Brain 135:2358–2374

    Article  PubMed  Google Scholar 

  63. van Vliet EA, Dedeurwaerdere S, Cole AJ et al (2016) WONOEP appraisal: imaging biomarkers in epilepsy. Epilepsia 58:315–330

    Article  PubMed  Google Scholar 

  64. Ashwal S, Holshouser B, Tong K et al (2004) Proton spectroscopy detected myoinositol in children with traumatic brain injury. Pediatr Res 56:630–638

    Article  CAS  PubMed  Google Scholar 

  65. Brooks WM, Stidley CA, Petropoulos H et al (2000) Metabolic and cognitive response to human traumatic brain injury: a quantitative proton magnetic resonance study. J Neurotrauma 17:629–640

    Article  CAS  PubMed  Google Scholar 

  66. Garnett MR, Blamire AM, Corkill RG et al (2000) Early proton magnetic resonance spectroscopy in normal-appearing brain correlates with outcome in patients following traumatic brain injury. Brain 123(Pt 10):2046–2054

    Article  PubMed  Google Scholar 

  67. Broer S, Loscher W (2015) Novel combinations of phenotypic biomarkers predict development of epilepsy in the lithium-pilocarpine model of temporal lobe epilepsy in rats. Epilepsy Behav 53:98–107

    Article  PubMed  Google Scholar 

  68. Hitiris N, Mohanraj R, Norrie J et al (2007) Predictors of pharmacoresistant epilepsy. Epilepsy Res 75:192–196

    Article  CAS  PubMed  Google Scholar 

  69. Gastens AM, Brandt C, Bankstahl JP, Loscher W (2008) Predictors of pharmacoresistant epilepsy: pharmacoresistant rats differ from pharmacoresponsive rats in behavioral and cognitive abnormalities associated with experimentally induced epilepsy. Epilepsia 49:1759–1776

    Article  CAS  PubMed  Google Scholar 

  70. Kanner AM, Byrne R, Chicharro A et al (2009) A lifetime psychiatric history predicts a worse seizure outcome following temporal lobectomy. Neurology 72:793–799

    Article  CAS  PubMed  Google Scholar 

  71. de Araujo Filho GM, Gomes FL, Mazetto L et al (2012) Major depressive disorder as a predictor of a worse seizure outcome one year after surgery in patients with temporal lobe epilepsy and mesial temporal sclerosis. Seizure 21:619–623

    Article  PubMed  Google Scholar 

  72. Cleary RA, Thompson PJ, Thom M, Foong J (2013) Postictal psychosis in temporal lobe epilepsy: risk factors and postsurgical outcome? Epilepsy Res 106:264–272

    Article  PubMed  Google Scholar 

  73. Gerlai R, Wojtowicz JM, Marks A, Roder J (1995) Overexpression of a calcium-binding protein, S100 beta, in astrocytes alters synaptic plasticity and impairs spatial learning in transgenic mice. Learn Mem 2:26–39

    Article  CAS  PubMed  Google Scholar 

  74. Nishiyama H, Knopfel T, Endo S, Itohara S (2002) Glial protein S100B modulates long-term neuronal synaptic plasticity. Proc Natl Acad Sci USA 99:4037–4042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Huttunen HJ, Kuja-Panula J, Sorci G et al (2000) Coregulation of neurite outgrowth and cell survival by amphoterin and S100 proteins through receptor for advanced glycation end products (RAGE) activation. J Biol Chem 275:40096–40105

    Article  CAS  PubMed  Google Scholar 

  76. Iori V, Maroso M, Rizzi M et al (2013) Receptor for advanced glycation endproducts is upregulated in temporal lobe epilepsy and contributes to experimental seizures. Neurobiol Dis 58:102–114

    Article  CAS  PubMed  Google Scholar 

  77. Mazarati A, Maroso M, Iori V et al (2011) High-mobility group box-1 impairs memory in mice through both toll-like receptor 4 and receptor for advanced glycation end products. Exp Neurol 232:143–148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Todd KJ, Serrano A, Lacaille JC, Robitaille R (2006) Glial cells in synaptic plasticity. J Physiol Paris 99:75–83

    Article  CAS  PubMed  Google Scholar 

  79. Ota Y, Zanetti AT, Hallock RM (2013) The role of astrocytes in the regulation of synaptic plasticity and memory formation. Neural Plast 2013:185463

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Ben Achour S, Pascual O (2010) Glia: the many ways to modulate synaptic plasticity. Neurochem Int 57:440–445

    Article  CAS  PubMed  Google Scholar 

  81. Blank T, Prinz M (2013) Microglia as modulators of cognition and neuropsychiatric disorders. Glia 61:62–70

    Article  PubMed  Google Scholar 

  82. Morris GP, Clark IA, Zinn R, Vissel B (2013) Microglia: a new frontier for synaptic plasticity, learning and memory, and neurodegenerative disease research. Neurobiol Learn Mem 105:40–53

    Article  CAS  PubMed  Google Scholar 

  83. Donato R, Sorci G, Riuzzi F et al (2009) S100B’s double life: intracellular regulator and extracellular signal. Biochim Biophys Acta 1793:1008–1022

    Article  CAS  PubMed  Google Scholar 

  84. Morquette P, Verdier D, Kadala A et al (2015) An astrocyte-dependent mechanism for neuronal rhythmogenesis. Nat Neurosci 18:844–854

    Article  CAS  PubMed  Google Scholar 

  85. Sakatani S, Seto-Ohshima A, Shinohara Y et al (2008) Neural-activity-dependent release of S100B from astrocytes enhances kainate-induced gamma oscillations in vivo. J Neurosci 28:10928–10936

    Article  CAS  PubMed  Google Scholar 

  86. Worrell GA, Parish L, Cranstoun SD et al (2004) High-frequency oscillations and seizure generation in neocortical epilepsy. Brain 127:1496–1506

    Article  PubMed  Google Scholar 

  87. Koh SXT, Lee JKW (2014) S100B as a marker for brain damage and blood-brain barrier disruption following exercise. Sports Med Auckl NZ 44:369–385

    Article  Google Scholar 

  88. Weissberg I, Wood L, Kamintsky L et al (2015) Albumin induces excitatory synaptogenesis through astrocytic TGF-beta/ALK5 signaling in a model of acquired epilepsy following blood-brain barrier dysfunction. Neurobiol Dis 78:115–125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Friedman A, Heinemann U (2012) Role of Blood-Brain Barrier Dysfunction in Epileptogenesis [Internet]. Jaspers Basic Mech. Epilepsies 4th edition

  90. Friedman A, Kaufer D, Heinemann U (2009) Blood-brain barrier breakdown-inducing astrocytic transformation: novel targets for the prevention of epilepsy. Epilepsy Res 85:142–149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Maroso M, Balosso S, Ravizza T et al (2010) Toll-like receptor 4 and high-mobility group box-1 are involved in ictogenesis and can be targeted to reduce seizures. Nat Med 16:413–419

    Article  CAS  PubMed  Google Scholar 

  92. Zurolo E, Iyer A, Maroso M et al (2011) Activation of TLR, RAGE and HMGB1 signaling in malformations of cortical development. Brain 134:1015–1032

    Article  PubMed  Google Scholar 

  93. Walker LE, Frigerio F, Ravizza T et al (2017) Molecular isoforms of HMGB1 are novel mechanistic biomarkers for epilepsy. J Clin Invest (in press)

  94. Scaffidi P, Misteli T, Bianchi ME (2002) Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature 418:191–195

    Article  CAS  PubMed  Google Scholar 

  95. Yang H, Antoine DJ, Andersson U, Tracey KJ (2013) The many faces of HMGB1: molecular structure-functional activity in inflammation, apoptosis, and chemotaxis. J Leukoc Biol 93:865–873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Lamkanfi M, Sarkar A, Vande Walle L et al (2010) Inflammasome-dependent release of the alarmin HMGB1 in endotoxemia. J Immunol 185:4385–4392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Yang H, Lundback P, Ottosson L et al (2012) Redox modification of cysteine residues regulates the cytokine activity of high mobility group box-1 (HMGB1). Mol Med 18:250–259

    Article  PubMed  CAS  Google Scholar 

  98. Balosso S, Liu J, Bianchi ME, Vezzani A (2014) Disulfide-containing High Mobility Group Box-1 promotes N-methyl-D-aspartate receptor function and excitotoxicity by activating Toll-like receptor 4-dependent signaling in hippocampal neurons. Antioxid Redox Signal 21:1726–1740

    Article  CAS  PubMed  Google Scholar 

  99. Pauletti A, Terrone G, Shekh-Ahmad T et al (2017) Targeting oxidative stress improves disease outcomes in a rat model of acquired epilepsy. Brain (in press)

  100. Mondello S, Shear DA, Bramlett HM et al (2016) Insight into pre-clinical models of traumatic brain injury using circulating brain damage biomarkers: operation brain trauma therapy. J Neurotrauma 33:595–605

    Article  PubMed  Google Scholar 

  101. Bronisz E, Kurkowska-Jastrzębska I (2016) Matrix metalloproteinase 9 in epilepsy: the role of neuroinflammation in seizure development. Mediators Inflamm 2016:7369020

    Article  PubMed  PubMed Central  Google Scholar 

  102. Zucker S, Doshi K, Cao J (2004) Measurement of matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMP) in blood and urine: potential clinical applications. Adv Clin Chem 38:37–85

    Article  CAS  PubMed  Google Scholar 

  103. Snitker S, Xie K, Ryan KA et al (2013) Correlation of circulating MMP-9 with white blood cell count in humans: effect of smoking. PloS ONE 8:e66277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Wagner S, Breyholz H-J, Faust A et al (2006) Molecular imaging of matrix metalloproteinases in vivo using small molecule inhibitors for SPECT and PET. Curr Med Chem 13:2819–2838

    Article  CAS  PubMed  Google Scholar 

  105. Boison D, Sandau US, Ruskin DN et al (2013) Homeostatic control of brain function—new approaches to understand epileptogenesis. Front Cell Neurosci 7:109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge the grant support by the European Union’s Seventh Framework Programme (FP7/2007–2013) under Grant Agreement No. 602102 (EPITARGET), and Citizen United for Research in Epilepsy (CURE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annamaria Vezzani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vezzani, A., Pascente, R. & Ravizza, T. Biomarkers of Epileptogenesis: The Focus on Glia and Cognitive Dysfunctions. Neurochem Res 42, 2089–2098 (2017). https://doi.org/10.1007/s11064-017-2271-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-017-2271-3

Keywords

Navigation