Skip to main content

Advertisement

Log in

Inactivation of the Tuberomammillary Nucleus by GABAA Receptor Agonist Promotes Slow Wave Sleep in Freely Moving Rats and Histamine-Treated Rats

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

A prominent hypothesis, the “flip–flop switch” model, predicts that histaminergic (HAergic) neurons in the tuberomammillary nucleus (TMN), an important component of the ascending arousal system, are inactivated by GABA mainly from the ventrolateral preoptic nucleus to allow the appearance and maintenance of sleep. However, which sleep state and the band of EEG activity induced by GABAergic inactivation of the TMN are unclear. In this study, alterations of sleep-wake states and cortical EEG power spectral density were investigated following muscimol, a GABAA-receptor agonist, microinjected bilaterally into the TMN in freely moving rats and HA pretreated rats, respectively. Muscimol dosed at 0.25 and 0.50 μg/side into the TMN during dark period dose-dependently increased slow wave sleep (SWS) accompanied by an increase in cortical EEG delta (0.5–4 Hz) and spindle (8.2–12 Hz) activities. In the meanwhile, wakefulness and EEG beta (12.2–30 Hz) activity were decreased significantly, while paradoxical sleep and EEG theta (4.2–8 Hz) activity were not changed. The increase of muscimol-induced SWS was because of prolonged SWS bout duration and not to an increased bout number. Muscimol (0.50 μg/side) administration 2 h after HA (0.125 μg/side) treatment during light period reversed the HA-induced wakefulness and EEG beta 2 (20.2–30 Hz) activity into SWS and EEG delta activity. These results demonstrate that the GABAergic inactivation of the TMN in freely moving rats and HA-treated rats promotes SWS and slow activity of cortical EEG, suggesting that the potential function of the GABAA receptor in the TMN is to dampen vigilant arousal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Haas HL, Sergeeva OA, Selbach O (2008) Histamine in the nervous system. Physiol Rev 88(3):1183–1241. doi:10.1152/physrev.00043.2007

    Article  CAS  PubMed  Google Scholar 

  2. Haas H, Panula P (2003) The role of histamine and the tuberomamillary nucleus in the nervous system. Nat Rev Neurosci 4(2):121–130. doi:10.1038/nrn1034

    Article  CAS  PubMed  Google Scholar 

  3. Lu J, Greco MA, Shiromani P, Saper CB (2000) Effect of lesions of the ventrolateral preoptic nucleus on NREM and REM sleep. J Neurosci 20(10):3830–3842

    CAS  PubMed  Google Scholar 

  4. Lin JS, Hou Y, Sakai K, Jouvet M (1996) Histaminergic descending inputs to the mesopontine tegmentum and their role in the control of cortical activation and wakefulness in the cat. J Neurosci 16(4):1523–1537

    CAS  PubMed  Google Scholar 

  5. Takahashi K, Lin JS, Sakai K (2006) Neuronal activity of histaminergic tuberomammillary neurons during wake-sleep states in the mouse. J Neurosci 26(40):10292–10298. doi:10.1523/jneurosci.2341-06.2006

    Article  CAS  PubMed  Google Scholar 

  6. Chu M, Huang ZL, Qu WM, Eguchi N, Yao MH, Urade Y (2004) Extracellular histamine level in the frontal cortex is positively correlated with the amount of wakefulness in rats. Neurosci Res 49(4):417–420. doi:10.1016/j.neures.2004.05.001

    Article  CAS  PubMed  Google Scholar 

  7. Strecker RE, Nalwalk J, Dauphin LJ, Thakkar MM, Chen Y, Ramesh V, Hough LB, McCarley RW (2002) Extracellular histamine levels in the feline preoptic/anterior hypothalamic area during natural sleep-wakefulness and prolonged wakefulness: an in vivo microdialysis study. Neuroscience 113(3):663–670

    Article  CAS  PubMed  Google Scholar 

  8. Baumann CR (2016) Sleep and traumatic brain injury. Sleep Med Clin 11(1):19–23. doi:10.1016/j.jsmc.2015.10.004

    Article  PubMed  Google Scholar 

  9. Valko PO, Gavrilov YV, Yamamoto M, Finn K, Reddy H, Haybaeck J, Weis S, Scammell TE, Baumann CR (2015) Damage to histaminergic tuberomammillary neurons and other hypothalamic neurons with traumatic brain injury. Ann Neurol 77(1):177–182. doi:10.1002/ana.24298

    Article  PubMed  Google Scholar 

  10. Thakkar MM (2011) Histamine in the regulation of wakefulness. Sleep Med Rev 15(1):65–74. doi:10.1016/j.smrv.2010.06.004

    Article  PubMed  Google Scholar 

  11. Itowi N, Yamatodani A, Kiyono S, Hiraiwa ML, Wada H (1991) Effect of histamine depletion on the circadian amplitude of the sleep-wakefulness cycle. Physiol Behav 49(3):643–646

    Article  CAS  PubMed  Google Scholar 

  12. Parmentier R, Ohtsu H, Djebbara-Hannas Z, Valatx JL, Watanabe T, Lin JS (2002) Anatomical, physiological, and pharmacological characteristics of histidine decarboxylase knock-out mice: evidence for the role of brain histamine in behavioral and sleep-wake control. J Neurosci 22(17):7695–7711

    CAS  PubMed  Google Scholar 

  13. Chou TC, Bjorkum AA, Gaus SE, Lu J, Scammell TE, Saper CB (2002) Afferents to the ventrolateral preoptic nucleus. J Neurosci 22(3):977–990

    CAS  PubMed  Google Scholar 

  14. Steininger TL, Gong H, McGinty D, Szymusiak R (2001) Subregional organization of preoptic area/anterior hypothalamic projections to arousal-related monoaminergic cell groups. J Comp Neurol 429(4):638–653

    Article  CAS  PubMed  Google Scholar 

  15. Sherin JE, Elmquist JK, Torrealba F, Saper CB (1998) Innervation of histaminergic tuberomammillary neurons by GABAergic and galaninergic neurons in the ventrolateral preoptic nucleus of the rat. J Neurosci 18(12):4705–4721

    CAS  PubMed  Google Scholar 

  16. Nelson LE, Guo TZ, Lu J, Saper CB, Franks NP, Maze M (2002) The sedative component of anesthesia is mediated by GABA(A) receptors in an endogenous sleep pathway. Nat Neurosci 5(10):979–984. doi:10.1038/nn913

    Article  CAS  PubMed  Google Scholar 

  17. Yang QZ, Hatton GI (1997) Electrophysiology of excitatory and inhibitory afferents to rat histaminergic tuberomammillary nucleus neurons from hypothalamic and forebrain sites. Brain Res 773(1–2):162–172

    Article  CAS  PubMed  Google Scholar 

  18. Okakura-Mochizuki K, Mochizuki T, Yamamoto Y, Horii A, Yamatodani A (1996) Endogenous GABA modulates histamine release from the anterior hypothalamus of the rat. J Neurochem 67(1):171–176

    Article  CAS  PubMed  Google Scholar 

  19. Nitz D, Siegel JM (1996) GABA release in posterior hypothalamus across sleep-wake cycle. Am J Physiol 271(6 Pt 2):R1707–R1712

    CAS  PubMed  Google Scholar 

  20. Saper CB, Fuller PM, Pedersen NP, Lu J, Scammell TE (2010) Sleep state switching. Neuron 68(6):1023–1042. doi:10.1016/j.neuron.2010.11.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Williams RH, Chee MJ, Kroeger D, Ferrari LL, Maratos-Flier E, Scammell TE, Arrigoni E (2014) Optogenetic-mediated release of histamine reveals distal and autoregulatory mechanisms for controlling arousal. J Neurosci 34(17):6023–6029. doi:10.1523/jneurosci.4838-13.2014

    Article  PubMed  PubMed Central  Google Scholar 

  22. Leung LS, Luo T, Ma J, Herrick I (2014) Brain areas that influence general anesthesia. Prog Neurobiol 122:24–44. doi:10.1016/j.pneurobio.2014.08.001

    Article  PubMed  Google Scholar 

  23. Paxinos G, Watson C (2007) The rat brain in stereotaxic coordinates. sixth edn. Academic Press, San Diego

    Google Scholar 

  24. Gradwohl G, Berdugo-Boura N, Segev Y, Tarasiuk A (2015) Sleep/wake dynamics changes during maturation in rats. PLoS ONE 10(4):e0125509. doi:10.1371/journal.pone.0125509

    Article  PubMed  PubMed Central  Google Scholar 

  25. Chouvet G, Odet P, Valatx JL, Pujol JF (1980) An automatic sleep classifier for laboratory rodents. Waking Sleep 4 (1):9–31

    CAS  Google Scholar 

  26. Zhang X, Sun YN, Xie P, Yang XG, Hou YP (2009) Effect of gamma-aminobutyric acid A-receptor antagonist on sleep-wakefulness cycles following lesion to the ventrolateral preoptic area in rats. Neural Regen Res 4 (1):53–57

    CAS  Google Scholar 

  27. Bonaventure P, Letavic M, Dugovic C, Wilson S, Aluisio L, Pudiak C, Lord B, Mazur C, Kamme F, Nishino S, Carruthers N, Lovenberg T (2007) Histamine H3 receptor antagonists: from target identification to drug leads. Biochem Pharmacol 73(8):1084–1096. doi:10.1016/j.bcp.2006.10.031

    Article  CAS  PubMed  Google Scholar 

  28. Szymusiak R, Alam N, Steininger TL, McGinty D (1998) Sleep-waking discharge patterns of ventrolateral preoptic/anterior hypothalamic neurons in rats. Brain Res 803(1–2):178–188

    Article  CAS  PubMed  Google Scholar 

  29. Sherin JE, Shiromani PJ, McCarley RW, Saper CB (1996) Activation of ventrolateral preoptic neurons during sleep. Science 271(5246):216–219

    Article  CAS  PubMed  Google Scholar 

  30. Zecharia AY, Nelson LE, Gent TC, Schumacher M, Jurd R, Rudolph U, Brickley SG, Maze M, Franks NP (2009) The involvement of hypothalamic sleep pathways in general anesthesia: testing the hypothesis using the GABAA receptor beta3N265M knock-in mouse. J Neurosci 29(7):2177–2187. doi:10.1523/jneurosci.4997-08.2009

    Article  CAS  PubMed  Google Scholar 

  31. Lu J, Nelson LE, Franks N, Maze M, Chamberlin NL, Saper CB (2008) Role of endogenous sleep-wake and analgesic systems in anesthesia. J Comp Neurol 508(4):648–662. doi:10.1002/cne.21685

    Article  PubMed  PubMed Central  Google Scholar 

  32. Rudolph U, Crestani F, Benke D, Brunig I, Benson JA, Fritschy JM, Martin JR, Bluethmann H, Mohler H (1999) Benzodiazepine actions mediated by specific gamma-aminobutyric acid(A) receptor subtypes. Nature 401(6755):796–800. doi:10.1038/44579

    Article  CAS  PubMed  Google Scholar 

  33. Yanovsky Y, Schubring S, Fleischer W, Gisselmann G, Zhu XR, Lubbert H, Hatt H, Rudolph U, Haas HL, Sergeeva OA (2012) GABAA receptors involved in sleep and anaesthesia: beta1- versus beta3-containing assemblies. Pflugers Arch 463(1):187–199. doi:10.1007/s00424-011-0988-4

    Article  CAS  PubMed  Google Scholar 

  34. Kukko-Lukjanov TK, Panula P (2003) Subcellular distribution of histamine, GABA and galanin in tuberomamillary neurons in vitro. J Chem Neuroanat 25(4):279–292

    Article  CAS  PubMed  Google Scholar 

  35. Chotard C, Ouimet T, Morisset S, Sahm U, Schwartz JC, Trottier S (2002) Effects of histamine H3 receptor agonist and antagonist on histamine co-transmitter expression in rat brain. J Neural Transm (Vienna) 109 (3):293–306. doi:10.1007/s007020200024

    Article  CAS  PubMed  Google Scholar 

  36. Sakai K, Takahashi K, Anaclet C, Lin JS (2010) Sleep-waking discharge of ventral tuberomammillary neurons in wild-type and histidine decarboxylase knock-out mice. Front. Behav Neurosci 4:53. doi:10.3389/fnbeh.2010.00053

    Google Scholar 

  37. Huang ZL, Urade Y, Hayaishi O (2011) The role of adenosine in the regulation of sleep. Curr Top Med Chem 11(8):1047–1057

    Article  CAS  PubMed  Google Scholar 

  38. Oishi Y, Huang ZL, Fredholm BB, Urade Y, Hayaishi O (2008) Adenosine in the tuberomammillary nucleus inhibits the histaminergic system via A1 receptors and promotes non-rapid eye movement sleep. Proc Natl Acad Sci USA 105(50):19992–19997. doi:10.1073/pnas.0810926105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hong ZY, Huang ZL, Qu WM, Eguchi N, Urade Y, Hayaishi O (2005) An adenosine A receptor agonist induces sleep by increasing GABA release in the tuberomammillary nucleus to inhibit histaminergic systems in rats. J Neurochem 92(6):1542–1549. doi:10.1111/j.1471-4159.2004.02991.x

    Article  CAS  PubMed  Google Scholar 

  40. Lee EY, Hwang YG, Lee HS (2016) Hypothalamic neuronal origin of neuropeptide Y (NPY) or cocaine- and amphetamine-regulated transcript (CART) fibers projecting to the tuberomammillary nucleus of the rat. Brain Res. doi:10.1016/j.brainres.2016.11.025

    PubMed Central  Google Scholar 

  41. Anaclet C, Lin JS, Vetrivelan R, Krenzer M, Vong L, Fuller PM, Lu J (2012) Identification and characterization of a sleep-active cell group in the rostral medullary brainstem. J Neurosci 32(50):17970–17976. doi:10.1523/jneurosci.0620-12.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lin JS, Sakai K, Jouvet M (1988) Evidence for histaminergic arousal mechanisms in the hypothalamus of cat. Neuropharmacology 27(2):111–122

    Article  CAS  PubMed  Google Scholar 

  43. Korotkova TM, Sergeeva OA, Ponomarenko AA, Haas HL (2005) Histamine excites noradrenergic neurons in locus coeruleus in rats. Neuropharmacology 49(1):129–134. doi:10.1016/j.neuropharm.2005.03.001

    Article  CAS  PubMed  Google Scholar 

  44. Barbara A, Aceves J, Arias-Montano JA (2002) Histamine H1 receptors in rat dorsal raphe nucleus: pharmacological characterisation and linking to increased neuronal activity. Brain Res 954(2):247–255

    Article  CAS  PubMed  Google Scholar 

  45. Zhou FW, Xu JJ, Zhao Y, LeDoux MS, Zhou FM (2006) Opposite functions of histamine H1 and H2 receptors and H3 receptor in substantia nigra pars reticulata. J Neurophysiol 96(3):1581–1591. doi:10.1152/jn.00148.2006

    Article  CAS  PubMed  Google Scholar 

  46. Soria-Jasso LE, Bahena-Trujillo R, Arias-Montano JA (1997) Histamine H1 receptors and inositol phosphate formation in rat thalamus. Neurosci Lett 225(2):117–120

    Article  CAS  PubMed  Google Scholar 

  47. Xu C, Michelsen KA, Wu M, Morozova E, Panula P, Alreja M (2004) Histamine innervation and activation of septohippocampal GABAergic neurones: involvement of local ACh release. J Physiol 561 (Pt 3):657–670. doi:10.1113/jphysiol.2004.071712

    Google Scholar 

  48. Selbach O, Brown RE, Haas HL (1997) Long-term increase of hippocampal excitability by histamine and cyclic AMP. Neuropharmacology 36(11–12):1539–1548

    Article  CAS  PubMed  Google Scholar 

  49. Reiner PB, Kamondi A (1994) Mechanisms of antihistamine-induced sedation in the human brain: H1 receptor activation reduces a background leakage potassium current. Neuroscience 59(3):579–588

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (30670677, 81071076, 81171254 and 81471347 to YPH; 31500853 to YFS) and the Fundamental Research Funds for the Central University (lzujbky-2015-167 and lzujbky-2015-277 to YFS). The authors declare no conflicts of interest in this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu-Feng Shao or Yi-Ping Hou.

Additional information

Jun-Fan Xie and Kun Fan have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, JF., Fan, K., Wang, C. et al. Inactivation of the Tuberomammillary Nucleus by GABAA Receptor Agonist Promotes Slow Wave Sleep in Freely Moving Rats and Histamine-Treated Rats. Neurochem Res 42, 2314–2325 (2017). https://doi.org/10.1007/s11064-017-2247-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-017-2247-3

Keywords

Navigation