Skip to main content

Advertisement

Log in

Oxabicycloheptene Sulfonate Protects Against β-Amyloid-induced Toxicity by Activation of PI3K/Akt and ERK Signaling Pathways Via GPER1 in C6 Cells

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Oxabicycloheptene sulfonate (OBHS) is a novel bicyclic core selective estrogen receptor modulator (SERM) with estrogen receptor (ER) antagonistic-activity and anti-inflammatory activity. However, little is known about protective action of OBHS on neurodegenerative disorders. In the present study, OBHS demonstrated a remarkably protective effect against amyloid beta (Aβ) induced cytotoxicity via G-protein-coupled estrogen receptor 1 (GPER1) in rat astroglial cell line (C6). The C6 cell death induced by Aβ was decreased by OBHS (1 μM) treatment for 45 min. This rapid protective action was blocked by GPER1 specific antagonist or siRNA knockdown. Inhibitors of phosphatidylinositol 3-kinase (PI3k)/Akt and extracellular signal-regulated kinase (ERK) activation also exhibited similar effects as GPER1 antagonist in blocking the protective effects of OBHS. Moreover, the expression of anti-apoptotic protein Bcl-2 was also increased by OBHS as a consequence of the activation of GPER1-PI3K/Akt and ERK pathways. Additionally, the phenyl sulfonate moiety of OBHS played a vital role in producing GPER1’s agonist property according to the molecular docking analysis. These findings suggest that OBHS provide protection directed at enhancing glial cell survival through the activation of GPER1, which, in turn, offers a novel insight into the molecular mechanisms behind the potential application of OBHS in treating Alzheimer’s disease (AD).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AD:

Alzheimer’s disease

Aβ:

Amyloid beta

ERT:

Estrogen replacement therapy

GPER1:

G-Protein-coupled estrogen receptor 1

ERs:

Estrogen receptors

CNS:

Central nervous system

PI3K:

Phosphatidylinositol 3-kinase

ERK:

Extracellular signal regulated kinase

DMEM:

Dulbecco’s modified Eagle’s medium

OBHS:

Oxabicycloheptene sulfonate

RAL:

Raloxifene

SERMs:

Selective estrogen receptor modulators

References

  1. Henderson VW (2014) Alzheimer’s disease: review of hormone therapy trials and implications for treatment and prevention after menopause. J Steroid Biochem 142:99–106

    Article  CAS  Google Scholar 

  2. Fossati S, Giannoni P, Solesio ME, Cocklin SL, Cabrera E, Ghiso J, Rostagno A (2016) The carbonic anhydrase inhibitor methazolamide prevents amyloid beta-induced mitochondrial dysfunction and caspase activation protecting neuronal and glial cells in vitro and in the mouse brain. Neurobiol Dis 86:29–40

    Article  CAS  PubMed  Google Scholar 

  3. Lee JK, Wang K, Park MH, Kim N, Lee JY, Jin HK, Kim I-S, Lee B-H, Bae J-s (2016) Probing amyloid beta-induced cell death using a fluorescence-peptide conjugate in Alzheimer’s disease mouse model. Brain Res 1646:514–521

    Article  CAS  PubMed  Google Scholar 

  4. Kawas C, Resnick S, Morrison A, Brookmeyer R, Corrada M, Zonderman A, Bacal C, Lingle DD, Metter E (1997) A prospective study of estrogen replacement therapy and the risk of developing Alzheimer’s disease The Baltimore Longitudinal Study of Aging. Neurology 48:1517–1521

    Article  CAS  PubMed  Google Scholar 

  5. Resnick SM, Metter EJ, Zonderman AB (1997) Estrogen replacement therapy and longitudinal decline in visual memory A possible protective effect? Neurology 49:1491–1497

    Article  CAS  PubMed  Google Scholar 

  6. Yager JD, Davidson NE (2006) Estrogen carcinogenesis in breast cancer. New Engl J Med 354:270–282

    Article  CAS  PubMed  Google Scholar 

  7. Rossouw JE, Prentice RL, Manson JE, Wu L, Barad D, Barnabei VM, Ko M, LaCroix AZ, Margolis KL, Stefanick ML (2007) Postmenopausal hormone therapy and risk of cardiovascular disease by age and years since menopause. JAMA 297:1465–1477

    Article  CAS  PubMed  Google Scholar 

  8. O’Neill K, Chen S, Brinton RD (2004) Impact of the selective estrogen receptor modulator, raloxifene, on neuronal survival and outgrowth following toxic insults associated with aging and Alzheimer’s disease. Exp Neurol 185:63–80

    Article  PubMed  Google Scholar 

  9. O’Neill K, Chen S, Brinton RD (2004) Impact of the selective estrogen receptor modulator, tamoxifen, on neuronal outgrowth and survival following toxic insults associated with aging and Alzheimer’s disease. Exp Neurol 188:268–278

    Article  PubMed  Google Scholar 

  10. Maki PM, Henderson VW (2012) Hormone therapy, dementia, and cognition: the Women’s Health Initiative 10 years on. Climacteric 15:256–262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. DonCarlos LL, Azcoitia I, Garcia-Segura LM (2009) Neuroprotective actions of selective estrogen receptor modulators. Psychoneuroendocrino 34:S113–S122

    Article  CAS  Google Scholar 

  12. Zhao L, O’Neill K, Brinton RD (2005) Selective estrogen receptor modulators (SERMs) for the brain: current status and remaining challenges for developing NeuroSERMs. Brain Res Rev 49:472–493

    Article  CAS  PubMed  Google Scholar 

  13. Bourque M, Morissette M, Côté M, Soulet D, Di Paolo T (2013) Implication of GPER1 in neuroprotection in a mouse model of Parkinson’s disease. Neurobiol Aging 34:887–901

    Article  CAS  PubMed  Google Scholar 

  14. Hazell GG, Yao ST, Roper JA, Prossnitz ER, O’Carroll A-M, Lolait SJ (2009) Localisation of GPR30, a novel G protein-coupled oestrogen receptor, suggests multiple functions in rodent brain and peripheral tissues. J Endocrinol 202:223–236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Prossnitz ER, Barton M (2011) The G-protein-coupled estrogen receptor GPER in health and disease. Nat Rev Endocrinol 7:715–726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Filardo EJ, Thomas P (2012) Minireview: G protein-coupled estrogen receptor-1, GPER-1: its mechanism of action and role in female reproductive cancer, renal and vascular physiology. Endocrinology 153:2953–2962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Karki P, Webb A, Zerguine A, Choi J, Son DS, Lee E (2014) Mechanism of raloxifene-induced upregulation of glutamate transporters in rat primary astrocytes. Glia 62:1270–1283

    Article  PubMed  PubMed Central  Google Scholar 

  18. Lee E, Sidoryk-Wêgrzynowicz M, Wang N, Webb A, Son D-S, Lee K, Aschner M (2012) GPR30 regulates glutamate transporter GLT-1 expression in rat primary astrocytes. J Biol Chem 287:26817–26828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Radany EH, Brenner M, Besnard F, Bigornia V, Bishop JM, Deschepper CF (1992) Directed establishment of rat brain cell lines with the phenotypic characteristics of type 1 astrocytes. Proc Natl Acad Sci USA 89:6467–6471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Furman JL, Sama DM, Gant JC, Beckett TL, Murphy MP, Bachstetter AD, Van Eldik LJ, Norris CM (2012) Targeting astrocytes ameliorates neurologic changes in a mouse model of Alzheimer’s disease. J Neurosci 32:16129–16140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Markiewicz I, Lukomska B (2006) The role of astrocytes in the physiology and pathology of the central nervous system. Acta Neurobiol Exp (Wars) 66:343–358

    Google Scholar 

  22. Vargas MR, Johnson JA (2009) The Nrf2–ARE cytoprotective pathway in astrocytes. Expert Rev Mol Med 11:e17

    Article  PubMed  Google Scholar 

  23. Wyss-Coray T, Loike JD, Brionne TC, Lu E, Anankov R, Yan F, Silverstein SC, Husemann J (2003) Adult mouse astrocytes degrade amyloid-beta in vitro and in situ. Nat Med 9:453–457

    Article  CAS  PubMed  Google Scholar 

  24. Takuma K, Baba A, Matsuda T (2004) Astrocyte apoptosis: implications for neuroprotection. Prog Neurobiol 72:111–127

    Article  CAS  PubMed  Google Scholar 

  25. Chen H, Tian M, Jin L, Jia H, Jin Y (2015) PUMA is invovled in ischemia/reperfusion-induced apoptosis of mouse cerebral astrocytes. Neuroscience 284:824–832

    Article  CAS  PubMed  Google Scholar 

  26. Liu Y, Zeng X, Hui Y, Zhu C, Wu J, Taylor DH, Ji J, Fan W, Huang Z, Hu J (2015) Activation of α7 nicotinic acetylcholine receptors protects astrocytes against oxidative stress-induced apoptosis: implications for Parkinson’s disease. Neuropharmacology 91:87–96

    Article  CAS  PubMed  Google Scholar 

  27. Zhou HB, Comninos JS, Stossi F, Katzenellenbogen BS, Katzenellenbogen JA (2005) Synthesis and evaluation of estrogen receptor ligands with bridged oxabicyclic cores containing a diarylethylene motif: estrogen antagonists of unusual structure. J Med Chem 48:7261–7274

    Article  CAS  PubMed  Google Scholar 

  28. Tang C, Li CH, Zhang SL, Hu ZY, Wu J, Dong CN, Huang J, Zhou HB (2015) Novel bioactive hybrid compound dual targeting estrogen receptor and histone deacetylase for the treatment of breast cancer. J Med Chem 58:4550–4572

    Article  CAS  PubMed  Google Scholar 

  29. Zhao Y, Gong P, Chen Y, Nwachukwu JC, Srinivasan S, Ko C, Bagchi MK, Taylor RN, Korach KS, Nettles KW, Katzenellenbogen JA, Katzenellenbogen BS (2015) Dual suppression of estrogenic and inflammatory activities for targeting of endometriosis. Sci Transl Med 7:271ra279

    Article  Google Scholar 

  30. Moen MD, Keating GM (2008) Raloxifene. Drugs 68:2059–2083

    Article  CAS  PubMed  Google Scholar 

  31. Bourque M, Morissette M, Di Paolo T (2014) Raloxifene activates G protein-coupled estrogen receptor 1/Akt signaling to protect dopamine neurons in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mice. Neurobiol Aging 35:2347–2356

    Article  CAS  PubMed  Google Scholar 

  32. Litim N, Morissette M, Di Paolo T (2016) Neuroactive gonadal drugs for neuroprotection in male and female models of Parkinson’s disease. Neurosci Biobehav Rev 67:79–88

    Article  CAS  PubMed  Google Scholar 

  33. Steiner J, Schroeter ML, Schiltz K, Bernstein H, Müller U, Richter-Landsberg C, Müller W, Walter M, Gos T, Bogerts B (2010) Haloperidol and clozapine decrease S100B release from glial cells. Neuroscience 167:1025–1031

    Article  CAS  PubMed  Google Scholar 

  34. Quincozes-Santos A, Bobermin LD, Latini A, Wajner M, Souza DO, Goncalves CA, Gottfried C (2013) Resveratrol protects C6 astrocyte cell line against hydrogen peroxide-induced oxidative stress through heme oxygenase 1. PLoS ONE 8:e64372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Huang C, Yuan P, Wu J, Huang J (2016) Estrogen regulates excitatory amino acid carrier 1 (EAAC1) expression through sphingosine kinase 1 (SphK1) transacting FGFR-mediated ERK signaling in rat C6 astroglial cells. Neuroscience 319:9–22

    Article  CAS  PubMed  Google Scholar 

  36. Hu S, Cui W, Mak S, Tang J, Choi C, Pang Y, Han Y (2013) Bis(propyl)-cognitin protects against glutamate-induced neuro-excitotoxicity via concurrent regulation of NO, MAPK/ERK and PI3-K/Akt/GSK3β pathways. Neurochem Int 62:468–477

    Article  CAS  PubMed  Google Scholar 

  37. Xie H, Xiao Z, Huang J (2016) C6 glioma-secreted NGF and FGF2 regulate neuronal APP processing through up-regulation of ADAM10 and down-regulation of BACE1, respectively. J Mol Neurosci 59:334–342

  38. Wu B, Chien EY, Mol CD, Fenalti G, Liu W, Katritch V, Abagyan R, Brooun A, Wells P, Bi FC (2010) Structures of the CXCR4 chemokine GPCR with small-molecule and cyclic peptide antagonists. Science 330:1066–1071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. OLBoyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR (2011) Open babel: an open chemical toolbox. J Cheminf 3:33

    Article  Google Scholar 

  40. Huey R, Morris GM, Olson AJ, Goodsell DS (2007) A semiempirical free energy force field with charge-based desolvation. J Comput Chem 28:1145–1152

    Article  CAS  PubMed  Google Scholar 

  41. Audie J (2009) Development and validation of an empirical free energy function for calculating protein–protein binding free energy surfaces. Biophys Chem 139:84–91

    Article  CAS  PubMed  Google Scholar 

  42. Han BH, Holtzman DM (2000) BDNF protects the neonatal brain from hypoxic-ischemic injury in vivo via the ERK pathway. J Neurosci 20:5775–5781

    CAS  PubMed  Google Scholar 

  43. Spencer JP, Rice-Evans C, Williams RJ (2003) Modulation of pro-survival Akt/protein kinase B and ERK1/2 signaling cascades by quercetin and its in vivo metabolites underlie their action on neuronal viability. J Biol Chem 278:34783–34793

    Article  CAS  PubMed  Google Scholar 

  44. Stragier E, Martin V, Davenas E, Poilbout C, Mongeau R, Corradetti R, Lanfumey L (2015) Brain plasticity and cognitive functions after ethanol consumption in C57BL/6 J mice. Transl Psychiat 5:e696

    Article  CAS  Google Scholar 

  45. Filardo EJ, Quinn JA, Bland KI, Frackelton AR Jr (2000) Estrogen-induced activation of Erk-1 and Erk-2 requires the G protein-coupled receptor homolog, GPR30, and occurs via trans-activation of the epidermal growth factor receptor through release of HB-EGF. Mol Endocrinol 14:1649–1660

    Article  CAS  PubMed  Google Scholar 

  46. Tang H, Zhang Q, Yang L, Dong Y, Khan M, Yang F, Brann DW, Wang R (2014) GPR30 mediates estrogen rapid signaling and neuroprotection. Mol Cell Endocrinol 387:52–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Mendez-Luna D, Martinez-Archundia M, Maroun RC, Ceballos-Reyes G, Fragoso-Vazquez MJ, Gonzalez-Juarez DE, Correa-Basurto J (2015) Deciphering the GPER/GPR30-agonist and antagonists interactions using molecular modeling studies, molecular dynamics, and docking simulations. J Biomol Struct Dyn 33:2161–2172

    Article  CAS  PubMed  Google Scholar 

  48. Bhattacharya S, Hall SE, Li H, Vaidehi N (2008) Ligand-stabilized conformational states of human β 2 adrenergic receptor: insight into G-protein-coupled receptor activation. Biophys J 94:2027–2042

    Article  CAS  PubMed  Google Scholar 

  49. Costanzi S (2012) Homology modeling of class ag protein-coupled receptors. In: Homology modeling. Springer, New York, pp 259–279

    Google Scholar 

  50. Trzaskowski B, Latek D, Yuan S, Ghoshdastider U, Debinski A, Filipek S (2012) Action of molecular switches in GPCRs: theoretical and experimental studies. Curr Med Chem 19:1090–1109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kobayashi K, Hayashi M, Nakano H, Shimazaki M, Sugimori K, Koshino Y (2004) Correlation between astrocyte apoptosis and Alzheimer changes in gray matter lesions in Alzheimer’s disease. J Alzheimers Dis 6:623–632

    Article  CAS  PubMed  Google Scholar 

  52. Nagele RG, Wegiel J, Venkataraman V, Imaki H, Wang KC, Wegiel J (2004) Contribution of glial cells to the development of amyloid plaques in Alzheimer’s disease. Neurobiol Aging 25:663–674

    Article  CAS  PubMed  Google Scholar 

  53. Hu X, Yuan Y, Wang D, Su Z (2016) Heterogeneous astrocytes: active players in CNS. Brain Res Bull 125:1–18

    Article  PubMed  Google Scholar 

  54. Wang G, Dinkins M, He Q, Zhu G, Poirier C, Campbell A, Mayer-Proschel M, Bieberich E (2012) Astrocytes secrete exosomes enriched with proapoptotic ceramide and prostate apoptosis response 4 (PAR-4): potential mechanism of apoptosis induction in Alzheimer disease (AD). J Biol Chem 287:21384–21395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wyss-Coray T, Loike JD, Brionne TC, Lu E, Anankov R, Yan F, Silverstein SC, Husemann J (2003) Adult mouse astrocytes degrade amyloid-β in vitro and in situ. Nat Med 9:453–457

    Article  CAS  PubMed  Google Scholar 

  56. Lee K-Y, Koh S-H, Noh MY, Kim SH, Lee YJ (2008) Phosphatidylinositol-3-kinase activation blocks amyloid beta-induced neurotoxicity. Toxicology 243:43–50

    Article  CAS  PubMed  Google Scholar 

  57. Ma R, Xiong N, Huang C, Tang Q, Hu B, Xiang J, Li G (2009) Erythropoietin protects PC12 cells from β-amyloid 25–35-induced apoptosis via PI3K/Akt signaling pathway. Neuropharmacology 56:1027–1034

    Article  CAS  PubMed  Google Scholar 

  58. Shi C, Zheng D-d, Fang L, Wu F, Kwong WH, Xu J (2012) Ginsenoside Rg1 promotes nonamyloidgenic cleavage of APP via estrogen receptor signaling to MAPK/ERK and PI3K/Akt. BBA-Gen Subjects 1820:453–460

    Article  CAS  Google Scholar 

  59. Lappano R, De Marco P, De Francesco EM, Chimento A, Pezzi V, Maggiolini M (2013) Cross-talk between GPER and growth factor signaling. J Steroid Biochem 137:50–56

    Article  CAS  Google Scholar 

  60. Thathiah A, De Strooper B (2011) The role of G protein-coupled receptors in the pathology of Alzheimer’s disease. Nat Rev Neurosci 12:73–87

    Article  CAS  PubMed  Google Scholar 

  61. Gingerich S, Kim G, Chalmers J, Koletar M, Wang X, Wang Y, Belsham D (2010) Estrogen receptor alpha and G-protein coupled receptor 30 mediate the neuroprotective effects of 17β-estradiol in novel murine hippocampal cell models. Neuroscience 170:54–66

    Article  CAS  PubMed  Google Scholar 

  62. Bourque M, Liu B, Dluzen DE, Di Paolo T (2011) Sex differences in methamphetamine toxicity in mice: effect on brain dopamine signaling pathways. Psychoneuroendocrino 36:955–969

    Article  CAS  Google Scholar 

  63. Kajta M, Rzemieniec J, Litwa E, Lason W, Lenartowicz M, Krzeptowski W, Wojtowicz A (2013) The key involvement of estrogen receptor β and G-protein-coupled receptor 30 in the neuroprotective action of daidzein. Neuroscience 238:345–360

    Article  CAS  PubMed  Google Scholar 

  64. Zhu M, Zhang C, Nwachukwu JC, Srinivasan S, Cavett V, Zheng Y, Carlson KE, Dong C, Katzenellenbogen JA, Nettles KW (2012) Bicyclic core estrogens as full antagonists: synthesis, biological evaluation and structure–activity relationships of estrogen receptor ligands based on bridged oxabicyclic core arylsulfonamides. Org Biomol Chem 10:8692–8700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Nettles KW, Bruning JB, Gil G, Nowak J, Sharma SK, Hahm JB, Kulp K, Hochberg RB, Zhou H, Katzenellenbogen JA (2008) NFκB selectivity of estrogen receptor ligands revealed by comparative crystallographic analyses. Nat Chem Biol 4:241–247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Nwachukwu JC, Srinivasan S, Zheng Y, Wang S, Min J, Dong C, Liao Z, Nowak J, Wright NJ, Houtman R (2016) Predictive features of ligand-specific signaling through the estrogen receptor. Mol Syst Biol 12:864

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (31371331, 81573279, 81373255) and the National Basic Research Program of China (973 Program) (2012CB720600) and Hubei Province’s Outstanding Medical Academic Leader Program. We thank Dr. Liu-Qing Yang in Johns Hopkins University School of Medicine for writing assistance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hai-Bing Zhou or Jian Huang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, LJ., Cheng, C., Wu, J. et al. Oxabicycloheptene Sulfonate Protects Against β-Amyloid-induced Toxicity by Activation of PI3K/Akt and ERK Signaling Pathways Via GPER1 in C6 Cells. Neurochem Res 42, 2246–2256 (2017). https://doi.org/10.1007/s11064-017-2237-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-017-2237-5

Keywords

Navigation