Skip to main content

Advertisement

Log in

RNA Interference Silencing of Glycogen Synthase Kinase 3β Inhibites Tau Phosphorylation in Mice with Alzheimer Disease

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

To explore the effect of glycogen synthase kinase 3β (GSK-3β) silencing on Tau-5 phosphorylation in mice suffering Alzheimer disease (AD). GSK-3β was firstly silenced in human neuroblastoma SH-SY5Y cells using special lentivirus (LV) and the content of Tau (A-12), p-Tau (Ser396) and p-Tau (PHF-6) proteins. GSK-3β was also silenced in APP/PS1 mouse model of AD mice, which were divided into three groups (n = 10): AD, vehicle, and LV group. Ten C57 mice were used as control. The memory ability of mice was tested by square water maze, and the morphological changes of hippocampus and neuron death were analyzed by haematoxylin–eosin staining. Moreover, the levels of Tau and phosphorylated Tau (p-Tau) were detected by western blotting and immunohistochemistry, respectively. The lentivirus-mediated GSK-3β silencing system was successfully developed and silencing GSK-3β at the cellular level reduced Tau phosphorylation obviously. Moreover, GSK-3β silence significantly improved the memory ability of AD mice in LV group compared with AD group (P < 0.05) according to the latency periods and error numbers. As for the hippocampus morphology and neuron death, no significant change was observed between LV group and normal control. Immunohistochemical detection and western blotting revealed that the levels of Tau and p-Tau were significantly down-regulated after GSK-3β silence. Silencing GSK-3β may have a positive effect on inhibiting the pathologic progression of AD through down-regulating the level of p-Tau.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Reitz C, Brayne C, Mayeux R (2011) Epidemiology of Alzheimer disease. Nat Rev Neurol 7:137–152

    Article  PubMed  PubMed Central  Google Scholar 

  2. Alzheimer’s Association (2011) 2011 Alzheimer’s disease facts and figures. Alzheimer’s Dement J Alzheimer’s Assoc 7:208

    Article  Google Scholar 

  3. Reitz C, Mayeux R (2014) Alzheimer disease: epidemiology, diagnostic criteria, risk factors and biomarkers. Biochem Pharmacol 88:640–651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Teller J, Russo C, Debusk LM, Angelini G, Zaccheo D, Dagna-Bricarelli F, Scartezzini P, Bertolini S, Mann D, Tabaton M (1996) Presence of soluble amyloid b-peptide precedes amyloid plaque formation in Down’s syndrome. Nat Med 2:93–95

    Article  CAS  PubMed  Google Scholar 

  5. Stern D (1995) Non-enzymatically glycated tau in Alzheimer’s disease induces neuronal oxidant stress resulting in cytokine gene expression and release of amyloid b-peptide. Nat Med 1:693–699

    Article  Google Scholar 

  6. Delacourte A, Defossez A (1986) Alzheimer’s disease: tau proteins, the promoting factors of microtubule assembly, are major components of paired helical filaments. J Neurol Sci 76:173–186

    Article  CAS  PubMed  Google Scholar 

  7. Ittner LM, Götz J (2011) Amyloid-β and tau—a toxic pas de deux in Alzheimer’s disease. Nat Rev Neurosci 12:67–72

    Article  Google Scholar 

  8. Israel MA, Yuan SH, Bardy C, Reyna SM, Mu Y, Herrera C, Hefferan MP, Van Gorp S, Nazor KL, Boscolo FS (2012) Probing sporadic and familial Alzheimer’s disease using induced pluripotent stem cells. Nature 482:216–220

    CAS  PubMed  PubMed Central  Google Scholar 

  9. DaRocha-Souto B, Coma M, Perez-Nievas B, Scotton T, Siao M, Sánchez-Ferrer P, Hashimoto T, Fan Z, Hudry E, Barroeta I (2012) Activation of glycogen synthase kinase-3 beta mediates β-amyloid induced neuritic damage in Alzheimer’s disease. Neurobiol Dis 45:425–437

    Article  CAS  PubMed  Google Scholar 

  10. Hernández F, Borrell J, Guaza C, Avila J, Lucas JJ (2002) Spatial learning deficit in transgenic mice that conditionally over-express GSK-3β in the brain but do not form tau filaments. J Neurochem 83:1529–1533

    Article  PubMed  Google Scholar 

  11. Lewis J, Dickson DW, Lin W-L, Chisholm L, Corral A, Jones G, Yen S-H, Sahara N, Skipper L, Yager D (2001) Enhanced neurofibrillary degeneration in transgenic mice expressing mutant tau and APP. Science 293:1487–1491

    Article  CAS  PubMed  Google Scholar 

  12. Leroy K, Yilmaz Z, Brion JP (2007) Increased level of active GSK-3β in Alzheimer’s disease and accumulation in argyrophilic grains and in neurones at different stages of neurofibrillary degeneration. Neuropathol Appl Neurobiol 33:43–55

    Article  CAS  PubMed  Google Scholar 

  13. Sutherland C, Leighton IA, Cohen P (1993) Inactivation of glycogen synthase kinase-3 beta by phosphorylation: new kinase connections in insulin and growth-factor signalling. Biochem J 296:15–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jin N, Yin X, Yu D, Cao M, Gong C-X, Iqbal K, Ding F, Gu X, Liu, F (2015) Truncation and activation of GSK-3β by calpain I: a molecular mechanism links to tau hyperphosphorylation in Alzheimer’s disease. Sci Rep 5:8187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Barilar JO, Knezovic A, Grünblatt E, Riederer P, Salkovic-Petrisic M (2015) Nine-month follow-up of the insulin receptor signalling cascade in the brain of streptozotocin rat model of sporadic Alzheimer’s disease. J Neural Transm 122:565–576

    Article  PubMed  Google Scholar 

  16. Kohnken R, Buerger K, Zinkowski R, Miller C, Kerkman D, DeBernardis J, Shen J, Möller H-J, Davies P, Hampel H (2000) Detection of tau phosphorylated at threonine 231 in cerebrospinal fluid of Alzheimer’s disease patients. Neurosci Lett 287:187–190

    Article  CAS  PubMed  Google Scholar 

  17. Vanmechelen E, Vanderstichele H, Davidsson P, Van Kerschaver E, Van Der Perre B, Sjögren M, Andreasen N, Blennow K (2000) Quantification of tau phosphorylated at threonine 181 in human cerebrospinal fluid: a sandwich ELISA with a synthetic phosphopeptide for standardization. Neurosci Lett 285:49–52

    Article  CAS  PubMed  Google Scholar 

  18. Itoh N, Arai H, Urakami K, Ishiguro K, Ohno H, Hampel H, Buerger K, Wiltfang J, Otto M, Kretzschmar H (2001) Large-scale, multicenter study of cerebrospinal fluid tau protein phosphorylated at serine 199 for the antemortem diagnosis of Alzheimer’s disease. Ann Neurol 50:150–156

    Article  CAS  PubMed  Google Scholar 

  19. Llorens-Marítin M, Jurado J, Hernández F, Ávila J (2014) GSK-3β, a pivotal kinase in Alzheimer disease. Front Mol Neurosci 7:46

    PubMed Central  Google Scholar 

  20. Mandelkow E-M, Mandelkow E (2012) Biochemistry and cell biology of tau protein in neurofibrillary degeneration. Cold Spring Harb Perspect Med 2:a006247

    Article  PubMed  PubMed Central  Google Scholar 

  21. Doble BW, Woodgett JR (2007) Role of glycogen synthase kinase-3 in cell fate and epithelial-mesenchymal transitions. Cells Tissues Organs 185:73–84

    Article  CAS  PubMed  Google Scholar 

  22. Terwel D, Muyllaert D, Dewachter I, Borghgraef P, Croes S, Devijver H, Van Leuven F (2008) Amyloid activates GSK-3β to aggravate neuronal tauopathy in bigenic mice. Am J Pathol 172:786–798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zheng W-H, Bastianetto S, Mennicken F, Ma W, Kar S (2002) Amyloid β peptide induces tau phosphorylation and loss of cholinergic neurons in rat primary septal cultures. Neuroscience 115:201–211

    Article  CAS  PubMed  Google Scholar 

  24. Deng Y, Xiong Z, Chen P, Wei J, Chen S, Yan Z (2014) β-Amyloid impairs the regulation of N-methyl-D-aspartate receptors by glycogen synthase kinase 3. Neurobiol Aging 35:449–459

    Article  CAS  PubMed  Google Scholar 

  25. Koh S-H, Noh MY, Kim SH (2008) Amyloid-beta-induced neurotoxicity is reduced by inhibition of glycogen synthase kinase-3. Brain Res 1188:254–262

    Article  CAS  PubMed  Google Scholar 

  26. Magdesian MH, Carvalho MM, Mendes FA, Saraiva LM, Juliano MA, Juliano L, Garcia-Abreu J, Ferreira ST (2008) Amyloid-β binds to the extracellular cysteine-rich domain of Frizzled and inhibits Wnt/β-catenin signaling. J Biol Chem 283:9359–9368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Christian SL, Sims PV, Gold MR (2002) The B cell antigen receptor regulates the transcriptional activator β-catenin via protein kinase C-mediated inhibition of glycogen synthase kinase-3. J Immunol 169:758–769

    Article  CAS  PubMed  Google Scholar 

  28. Lucas JJ, Hernández F, Gómez-Ramos P, Morán MA, Hen R, Avila J (2001) Decreased nuclear β-catenin, tau hyperphosphorylation and neurodegeneration in GSK-3β conditional transgenic mice. EMBO J 20:27–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Engel T, Hernández F, Avila J, Lucas JJ (2006) Full reversal of Alzheimer’s disease-like phenotype in a mouse model with conditional overexpression of glycogen synthase kinase-3. J neurosci 26:5083–5090

    Article  CAS  PubMed  Google Scholar 

  30. Roberson ED, Scearce-Levie K, Palop JJ, Yan F, Cheng IH, Wu T, Gerstein H, Yu G-Q, Mucke L (2007) Reducing endogenous tau ameliorates amyloid ß-induced deficits in an Alzheimer’s disease mouse model. Science 316:750–754

    Article  CAS  PubMed  Google Scholar 

  31. Augustinack JC, Schneider A, Mandelkow E-M, Hyman BT (2002) Specific tau phosphorylation sites correlate with severity of neuronal cytopathology in Alzheimer’s disease. Acta Neuropathol (Berl) 103:26–35

    Article  CAS  Google Scholar 

  32. Luna-Munoz J, Chavez-Macias L, Garcia-Sierra F, Mena R (2007) Earliest stages of tau conformational changes are related to the appearance of a sequence of specific phospho-dependent tau epitopes in Alzheimer’s disease. J Alzheimer’s Dis 12:365–375

    CAS  Google Scholar 

  33. Sengupta A, Kabat J, Novak M, Wu Q, Grundke-Iqbal I, Iqbal K (1998) Phosphorylation of tau at both Thr 231 and Ser 262 is required for maximal inhibition of its binding to microtubules. Arch Biochem Biophys 357:299–309

    Article  CAS  PubMed  Google Scholar 

  34. Li T, Hawkes C, Qureshi HY, Kar S, Paudel HK (2006) Cyclin-dependent protein kinase 5 primes microtubule-associated protein tau site-specifically for glycogen synthase kinase 3β. Biochemisty 45:3134–3145

    Article  CAS  Google Scholar 

  35. de Barreda EG, Pérez M, Ramos PG, de Cristobal J, Martín-Maestro P, Morán A, Dawson HN, Vitek MP, Lucas JJ, Hernández F (2010) Tau-knockout mice show reduced GSK3-induced hippocampal degeneration and learning deficits. Neurobiol Dis 37:622–629

    Article  Google Scholar 

  36. Hernández F, de Barreda EG, Fuster-Matanzo A, Lucas JJ, Avila J (2010) GSK3: a possible link between beta amyloid peptide and tau protein. Exp Neurol 223:322–325

    Article  PubMed  Google Scholar 

  37. Li Y-P, Yang G-J, Jin L, Yang H-M, Chen J, Chai G-S, Wang L (2015) Erythropoietin attenuates Alzheimer-like memory impairments and pathological changes induced by amyloid β 42 in mice. Brain Res 1618:159–167

    Article  CAS  PubMed  Google Scholar 

  38. Xie M, Shi R, Pan Y, Zeng T, Chen Q, Wang S, Liao X (2014) Proteasome inhibition-induced downregulation of Akt/GSK-3β pathway contributes to abnormality of tau in hippocampal slice. Mol Neurobiol 50:888–895

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by National Natural Science Foundation of China (30970989) and Science and Technology Development Program of Jinan City (201401075).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Bian.

Ethics declarations

Conflict of interest

None declared.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bian, H., Bian, W., Lin, X. et al. RNA Interference Silencing of Glycogen Synthase Kinase 3β Inhibites Tau Phosphorylation in Mice with Alzheimer Disease. Neurochem Res 41, 2470–2480 (2016). https://doi.org/10.1007/s11064-016-1960-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-016-1960-7

Keywords

Navigation