Skip to main content

Advertisement

Log in

Rats with Malformations of Cortical Development Exhibit Decreased Length of AIS and Hypersensitivity to Pilocarpine-Induced Status Epilepticus

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Malformations of cortical development (MCD) are critical brain development disorders associated with varied abnormalities in both anatomic structures and neural functioning. It is also a very common etiology to the epilepsy, in which the alteration on excitability of cortical neurons is hypothesized as one of important causes to the epileptic seizures. Due to the key role in regulating neuron firing properties, the plasticity of axon initial segment (AIS) was investigated in present study to further determine the relation between MCD and epilepsy. Our results showed a prolonged decrease in the length of AIS occurred in MCD animal models. Besides, the AIS was also found greatly shortened in MCD models during the acute, but not chronic phase of status epileptics compared with intact controls. Our findings of identification of AIS plasticity in MCD animal models and its hypersensitivity to status epilepsy are significant in furthering our understanding of the pathophysiological mechanisms involved in this disorder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kuzniecky RI (1994) Magnetic resonance imaging in developmental disorders of the cerebral cortex. Epilepsia 35(Suppl 6):S44–S56

    Article  PubMed  Google Scholar 

  2. Pang T, Atefy R, Sheen V (2008) Malformations of cortical development. Neurologist 14(3):181–191

    Article  PubMed  PubMed Central  Google Scholar 

  3. Gungor S et al (2007) Malformations of cortical development and epilepsy: evaluation of 101 cases (part II). Turk J Pediatr 49(2):131–140

    PubMed  Google Scholar 

  4. Sisodiya SM (2000) Surgery for malformations of cortical development causing epilepsy. Brain 123(Pt 6):1075–1091

    Article  PubMed  Google Scholar 

  5. Chang BS, Lowenstein DH (2003) Epilepsy. N Engl J Med 349(13):1257–1266

    Article  PubMed  Google Scholar 

  6. Fisher RS et al (2014) ILAE official report: a practical clinical definition of epilepsy. Epilepsia 55(4):475–482

    Article  PubMed  Google Scholar 

  7. Kole MH, Stuart GJ (2012) Signal processing in the axon initial segment. Neuron 73(2):235–247

    Article  CAS  PubMed  Google Scholar 

  8. Wimmer VC et al (2010) Axon initial segment dysfunction in epilepsy. J Physiol 588(Pt 11):1829–1840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kole MH et al (2008) Action potential generation requires a high sodium channel density in the axon initial segment. Nat Neurosci 11(2):178–186

    Article  CAS  PubMed  Google Scholar 

  10. Lorincz A, Nusser Z (2010) Molecular identity of dendritic voltage-gated sodium channels. Science 328(5980):906–909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Grubb MS, Burrone J (2010) Activity-dependent relocation of the axon initial segment fine-tunes neuronal excitability. Nature 465(7301):1070–1074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Grubb MS, Burrone J (2010) Building and maintaining the axon initial segment. Curr Opin Neurobiol 20(4):481–488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Song AH et al (2009) A selective filter for cytoplasmic transport at the axon initial segment. Cell 136(6):1148–1160

    Article  CAS  PubMed  Google Scholar 

  14. Kuba H, Oichi Y, Ohmori H (2010) Presynaptic activity regulates Na(+) channel distribution at the axon initial segment. Nature 465(7301):1075–1078

    Article  CAS  PubMed  Google Scholar 

  15. Boiko T et al (2003) Functional specialization of the axon initial segment by isoform-specific sodium channel targeting. J Neurosci 23(6):2306–2313

    CAS  PubMed  Google Scholar 

  16. Kole MH, Letzkus JJ, Stuart GJ (2007) Axon initial segment Kv1 channels control axonal action potential waveform and synaptic efficacy. Neuron 55(4):633–647

    Article  CAS  PubMed  Google Scholar 

  17. Wong M (2009) Animal models of focal cortical dysplasia and tuberous sclerosis complex: recent progress toward clinical applications. Epilepsia 50(Suppl 9):34–44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Moroni RF et al (2009) Expression of layer-specific markers in the adult neocortex of BCNU-Treated rat, a model of cortical dysplasia. Neuroscience 159(2):682–691

    Article  CAS  PubMed  Google Scholar 

  19. Andre V et al (2000) Electroshocks delay seizures and subsequent epileptogenesis but do not prevent neuronal damage in the lithium-pilocarpine model of epilepsy. Epilepsy Res 42(1):7–22

    Article  CAS  PubMed  Google Scholar 

  20. Lemos T, Cavalheiro EA (1995) Suppression of pilocarpine-induced status epilepticus and the late development of epilepsy in rats. Exp Brain Res 102(3):423–428

    Article  CAS  PubMed  Google Scholar 

  21. Lurton D, Cavalheiro EA (1997) Neuropeptide-Y immunoreactivity in the pilocarpine model of temporal lobe epilepsy. Exp Brain Res 116(1):186–190

    Article  CAS  PubMed  Google Scholar 

  22. Leite JP, Cavalheiro EA (1995) Effects of conventional antiepileptic drugs in a model of spontaneous recurrent seizures in rats. Epilepsy Res 20(2):93–104

    Article  CAS  PubMed  Google Scholar 

  23. O’Leary DD, Sahara S (2008) Genetic regulation of arealization of the neocortex. Curr Opin Neurobiol 18(1):90–100

    Article  PubMed  PubMed Central  Google Scholar 

  24. Cholfin JA, Rubenstein JL (2007) Patterning of frontal cortex subdivisions by Fgf17. Proc Natl Acad Sci USA 104(18):7652–7657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cholfin JA, Rubenstein JL (2008) Frontal cortex subdivision patterning is coordinately regulated by Fgf8, Fgf17, and Emx2. J Comp Neurol 509(2):144–155

    Article  PubMed  PubMed Central  Google Scholar 

  26. Hoch RV, Rubenstein JL, Pleasure S (2009) Genes and signaling events that establish regional patterning of the mammalian forebrain. Semin Cell Dev Biol 20(4):378–386

    Article  CAS  PubMed  Google Scholar 

  27. Colciaghi F et al (2011) Status epilepticus-induced pathologic plasticity in a rat model of focal cortical dysplasia. Brain 134(Pt 10):2828–2843

    Article  PubMed  Google Scholar 

  28. Grubb MS et al (2011) Short- and long-term plasticity at the axon initial segment. J Neurosci 31(45):16049–16055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kordeli E, Bennett V (1991) Distinct ankyrin isoforms at neuron cell bodies and nodes of Ranvier resolved using erythrocyte ankyrin-deficient mice. J Cell Biol 114(6):1243–1259

    Article  CAS  PubMed  Google Scholar 

  30. Zhou D et al (1998) AnkyrinG is required for clustering of voltage-gated Na channels at axon initial segments and for normal action potential firing. J Cell Biol 143(5):1295–1304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hedstrom KL, Ogawa Y, Rasband MN (2008) AnkyrinG is required for maintenance of the axon initial segment and neuronal polarity. J Cell Biol 183(4):635–640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Evans MD et al (2015) Rapid modulation of axon initial segment length influences repetitive spike firing. Cell Rep 13(6):1233–1245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kellinghaus C et al (2007) Dissociation between in vitro and in vivo epileptogenicity in a rat model of cortical dysplasia. Epileptic Disord 9(1):11–19

    PubMed  Google Scholar 

  34. Nakamura A, Osonoi T, Terauchi Y (2010) Relationship between urinary sodium excretion and pioglitazone-induced edema. J Diabetes Investig 1(5):208–211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Schafer DP et al (2009) Disruption of the axon initial segment cytoskeleton is a new mechanism for neuronal injury. J Neurosci 29(42):13242–13254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Long LL et al (2007) Changes of expression of cation-chloride cotransporter genes in hippocampus of cortical dysplasia: experiment with rat. Zhonghua Yi Xue Za Zhi 87(19):1351–1354

    CAS  PubMed  Google Scholar 

  37. Baulac S et al (2001) First genetic evidence of GABA(A) receptor dysfunction in epilepsy: a mutation in the gamma2-subunit gene. Nat Genet 28(1):46–48

    CAS  PubMed  Google Scholar 

  38. Wallace RH et al (2001) Mutant GABA(A) receptor gamma2-subunit in childhood absence epilepsy and febrile seizures. Nat Genet 28(1):49–52

    CAS  PubMed  Google Scholar 

  39. Naundorf B, Wolf F, Volgushev M (2006) Unique features of action potential initiation in cortical neurons. Nature 440(7087):1060–1063

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by National Natural Science Foundation of China (No. NNSF-81000553).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bo Xiao or Li Feng.

Ethics declarations

Conflict of interest

The author(s) declare(s) that there is no conflict of interests regarding the publication of this paper.

Additional information

Yelan Wang and Danni Sun contributed equally to this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Sun, D., Yue, Z. et al. Rats with Malformations of Cortical Development Exhibit Decreased Length of AIS and Hypersensitivity to Pilocarpine-Induced Status Epilepticus. Neurochem Res 41, 2215–2222 (2016). https://doi.org/10.1007/s11064-016-1936-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-016-1936-7

Keywords

Navigation