Skip to main content
Log in

Mitochondrial Ca2+ Processing by a Unit of Mitochondrial Ca2+ Uniporter and Na+/Ca2+ Exchanger Supports the Neuronal Ca2+ Influx via Activated Glutamate Receptors

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The current study demonstrates that in hippocampal neurons mitochondrial Ca2+ processing supports Ca2+ influx via ionotropic glutamate (Glu) receptors. We define mitochondrial Ca2+ processing as Ca2+ uptake via mitochondrial Ca2+ uniporter (MCU) combined with subsequent Ca2+ release via mitochondrial Na+/Ca2+ exchanger (NCX). Our tool is to measure the Ca2+ influx rate in primary hippocampal co-cultures, i.e. neurons and astrocytes, by fluorescent digital microscopy, using a Fura-2-quenching method where we add small amounts of Mn2+ in the superfusion medium. Thus, Ca2+ influx is measured with Mn2+ in the bath. Ru360 as inhibitor of mitochondrial Ca2+ uptake through MCU strongly reduces the rate of Ca2+ influx in Glu-stimulated primary hippocampal neurons. Similarly, the Ca2+ influx rate in Glu-stimulated neurons declines after suppression of potential-dependent MCU, when we depolarize mitochondria with rotenone. With inhibition of Ca2+ release from mitochondria via NCX using CGP-37157 the Ca2+ influx via N-methyl-d-aspartate (NMDA)- and kainate-sensitive receptors is slowed down. Working jointly as mitochondrial Ca2+ processing unit, MCU and NCX, apparently sustain the Ca2+ throughput of activated Glu-sensitive receptors. Our results revise the role frequently attributed to mitochondria in neuronal Ca2+ homeostasis, where mitochondria function mainly as Ca2+ buffer, and prevent excessively high cytosolic Ca2+ concentration increase during neuronal activity. The mechanism to control Ca2+ influx in neurons, as discovered in this study, highlights mitochondrial Ca2+ processing as a promising pharmacological target. We discuss this pathway in relation to the endoplasmic reticulum-related mechanisms of Ca2+ processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AMPA:

2-Amino-3-(3-hydroxy-5-methyl-isoxazol-4-yl) propanoic acid

CCE:

Capacitative Ca2+ entry

ER:

Endoplasmic reticulum

ETC:

Electron transport chain

GFAP:

Glial fibrillary acidic protein

Glu:

Glutamate

Gly:

Glycine

IP3 :

Inositol 1,4,5-trisphosphate

GluR:

Glu receptors

MCU:

Mitochondrial Ca2+ uniporter

NCX:

(Mitochondrial) Na+/Ca2+ exchanger

NMDA:

N-methyl-d-aspartate

PLC:

Phospholipase C

SOC:

Store-operated Ca2+ channels

VGCC:

Voltage-gated Ca2+ channels

References

  1. Blaustein MP, Ratzlaff RW, Kendrick NK (1978) The regulation of intracellular calcium in presynaptic nerve terminals. Ann N Y Acad Sci 307:195–212

    Article  CAS  PubMed  Google Scholar 

  2. Gunter TE, Gunter KK, Sheu SS, Gavin CE (1994) Mitochondrial calcium transport: physiological and pathological relevance. Am J Physiol 267:C313–C339

    CAS  PubMed  Google Scholar 

  3. David G (1999) Mitochondrial clearance of cytosolic Ca2+ in stimulated lizard motor nerve terminals proceeds without progressive elevation of mitochondrial matrix [Ca2+]. J Neurosci 19:7495–7506

    CAS  PubMed  Google Scholar 

  4. Tang Y, Zucker RS (1997) Mitochondrial involvement in post-tetanic potentiation of synaptic transmission. Neuron 18:483–491

    Article  CAS  PubMed  Google Scholar 

  5. Werth JL, Thayer SA (1994) Mitochondria buffer physiological calcium loads in cultured rat dorsal root ganglion neurons. J Neurosci 14:348–356

    CAS  PubMed  Google Scholar 

  6. Nicholls DG, Ward MW (2000) Mitochondrial membrane potential and neuronal glutamate excitotoxicity: mortality and millivolts. Trends Neurosci 23:166–174

    Article  CAS  PubMed  Google Scholar 

  7. Rosenstock TR, Bertoncini CR, Teles AV, Hirata H, Fernandes MJ, Smaili SS (2010) Glutamate-induced alterations in Ca2+ signaling are modulated by mitochondrial Ca2+ handling capacity in brain slices of R6/1 transgenic mice. Eur J Neurosci 32:60–70

    Article  CAS  PubMed  Google Scholar 

  8. Peng TI, Jou MJ, Sheu SS, Greenamyre JT (1998) Visualization of NMDA receptor-induced mitochondrial calcium accumulation in striatal neurons. Exp Neurol 149:1–12

    Article  CAS  PubMed  Google Scholar 

  9. Khodorov B, Pinelis V, Storozhevykh T, Vergun O, Vinskaya N (1996) Dominant role of mitochondria in protection against a delayed neuronal Ca2+ overload induced by endogenous excitatory amino acids following a glutamate pulse. FEBS Lett 393:135–138

    Article  CAS  PubMed  Google Scholar 

  10. Peng TI, Greenamyre JT (1998) Privileged access to mitochondria of calcium influx through N-methyl-d-aspartate receptors. Mol Pharmacol 53:974–980

    CAS  PubMed  Google Scholar 

  11. Kannurpatti SS, Joshi PG, Joshi NB (2000) Calcium sequestering ability of mitochondria modulates influx of calcium through glutamate receptor channel. Neurochem Res 25:1527–1536

    Article  CAS  PubMed  Google Scholar 

  12. Budd SL, Nicholls DG (1996) A reevaluation of the role of mitochondria in neuronal Ca2+ homeostasis. J Neurochem 66:403–411

    Article  CAS  PubMed  Google Scholar 

  13. Kirichok Y, Krapivinsky G, Clapham DE (2004) The mitochondrial calcium uniporter is a highly selective ion channel. Nature 427:360–364

    Article  CAS  PubMed  Google Scholar 

  14. Gunter TE, Pfeiffer DR (1990) Mechanisms by which mitochondria transport calcium. Am J Physiol 258:C755–C786

    CAS  PubMed  Google Scholar 

  15. Saris NE, Carafoli E (2005) A historical review of cellular calcium handling, with emphasis on mitochondria. Biochemistry Biokhimiia 70:187–194

    Article  CAS  PubMed  Google Scholar 

  16. Patron M, Raffaello A, Granatiero V, Tosatto A, Merli G, De Stefani D, Wright L, Pallafacchina G, Terrin A, Mammucari C, Rizzuto R (2013) The mitochondrial calcium uniporter (MCU): molecular identity and physiological roles. J Biol Chem 288:10750–10758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gouriou Y, Bijlenga P, Demaurex N (2013) Mitochondrial Ca2+ uptake from plasma membrane Cav3.2 protein channels contributes to ischemic toxicity in PC12 cells. J Biol Chem 288:12459–12468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Perocchi F, Gohil VM, Girgis HS, Bao XR, McCombs JE, Palmer AE, Mootha VK (2010) MICU1 encodes a mitochondrial EF hand protein required for Ca2+ uptake. Nature 467:291–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jiang D, Zhao L, Clapham DE (2009) Genome-wide RNAi screen identifies Letm1 as a mitochondrial Ca2+/H+ antiporter. Science 326:144–147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Fiskum G, Lehninger AL (1979) Regulated release of Ca2+ from respiring mitochondria by Ca2+/2H+ antiport. J Biol Chem 254:6236–6239

    CAS  PubMed  Google Scholar 

  21. Palty R, Silverman WF, Hershfinkel M, Caporale T, Sensi SL, Parnis J, Nolte C, Fishman D, Shoshan-Barmatz V, Herrmann S, Khananshvili D, Sekler I (2010) NCLX is an essential component of mitochondrial Na+/Ca2+ exchange. Proc Natl Acad Sci USA 107:436–441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Murchison D, Griffith WH (2000) Mitochondria buffer non-toxic calcium loads and release calcium through the mitochondrial permeability transition pore and sodium/calcium exchanger in rat basal forebrain neurons. Brain Res 854:139–151

    Article  CAS  PubMed  Google Scholar 

  23. Campello S, De Marchi U, Szabo I, Tombola F, Martinou JC, Zoratti M (2005) The properties of the mitochondrial megachannel in mitoplasts from human colon carcinoma cells are not influenced by Bax. FEBS Lett 579:3695–3700

    Article  CAS  PubMed  Google Scholar 

  24. Azarashvili T, Stricker R, Reiser G (2010) The mitochondria permeability transition pore complex in the brain with interacting proteins—promising targets for protection in neurodegenerative diseases. Biol Chem 391:619–629

    Article  CAS  PubMed  Google Scholar 

  25. Bernardi P (2013) The mitochondrial permeability transition pore: a mystery solved? Front Physiol 4:95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Parnis J, Montana V, Delgado-Martinez I, Matyash V, Parpura V, Kettenmann H, Sekler I, Nolte C (2013) Mitochondrial exchanger NCLX plays a major role in the intracellular Ca2+ signaling, gliotransmission, and proliferation of astrocytes. J Neurosci 33:7206–7219

    Article  CAS  PubMed  Google Scholar 

  27. Malli R, Frieden M, Osibow K, Zoratti C, Mayer M, Demaurex N, Graier WF (2003) Sustained Ca2+ transfer across mitochondria is essential for mitochondrial Ca2+ buffering, sore-operated Ca2+ entry, and Ca2+ store refilling. J Biol Chem 278:44769–44779

    Article  CAS  PubMed  Google Scholar 

  28. Naghdi S, Waldeck-Weiermair M, Fertschai I, Poteser M, Graier WF, Malli R (2010) Mitochondrial Ca2+ uptake and not mitochondrial motility is required for STIM1-Orai1-dependent store-operated Ca2+ entry. J Cell Sci 123:2553–2564

    Article  CAS  PubMed  Google Scholar 

  29. Kahlert S, Zündorf G, Reiser G (2005) Glutamate-mediated influx of extracellular Ca2+ is coupled with reactive oxygen species generation in cultured hippocampal neurons but not in astrocytes. J Neurosci Res 79:262–271

    Article  CAS  PubMed  Google Scholar 

  30. Strokin M, Seburn KL, Cox GA, Martens KA, Reiser G (2012) Severe disturbance in the Ca2+ signaling in astrocytes from mouse models of human infantile neuroaxonal dystrophy with mutated Pla2g6. Hum Mol Genet 21:2807–2814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wang GJ, Thayer SA (2002) NMDA-induced calcium loads recycle across the mitochondrial inner membrane of hippocampal neurons in culture. J Neurophysiol 87:740–749

    CAS  PubMed  Google Scholar 

  32. Baron KT, Thayer SA (1997) CGP37157 modulates mitochondrial Ca2+ homeostasis in cultured rat dorsal root ganglion neurons. Eur J Pharmacol 340:295–300

    Article  CAS  PubMed  Google Scholar 

  33. Ruiz A, Alberdi E, Matute C (2014) CGP37157, an inhibitor of the mitochondrial Na+/Ca2+ exchanger, protects neurons from excitotoxicity by blocking voltage-gated Ca2+ channels. Cell Death Dis 5:e1156

    Article  CAS  PubMed  Google Scholar 

  34. Luciani DS, Ao P, Hu X, Warnock GL, Johnson JD (2007) Voltage-gated Ca2+ influx and insulin secretion in human and mouse β-cells are impaired by the mitochondrial Na+/Ca2+ exchange inhibitor CGP-37157. Eur J Pharmacol 576:18–25

    Article  CAS  PubMed  Google Scholar 

  35. Stanika RI, Villanueva I, Kazanina G, Andrews SB, Pivovarova NB (2012) Comparative impact of voltage-gated calcium channels and NMDA receptors on mitochondria-mediated neuronal injury. J Neurosci 32:6642–6650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. White RJ, Reynolds IJ (1995) Mitochondria and Na+/Ca2+ exchange buffer glutamate-induced calcium loads in cultured cortical neurons. J Neurosci 15:1318–1328

    CAS  PubMed  Google Scholar 

  37. Tadross MR, Tsien RW, Yue DT (2013) Ca2+ channel nanodomains boost local Ca2+ amplitude. Proc Natl Acad Sci USA 110:15794–15799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mullins FM, Park CY, Dolmetsch RE, Lewis RS (2009) STIM1 and calmodulin interact with Orai1 to induce Ca2+-dependent inactivation of CRAC channels. Proc Natl Acad Sci USA 106:15495–15500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Matlib MA, Zhou Z, Knight S, Ahmed S, Choi KM, Krause-Bauer J, Phillips R, Altschuld R, Katsube Y, Sperelakis N, Bers DM (1998) Oxygen-bridged dinuclear ruthenium amine complex specifically inhibits Ca2+ uptake into mitochondria in vitro and in situ in single cardiac myocytes. J Biol Chem 273:10223–10231

    Article  CAS  PubMed  Google Scholar 

  40. Czyz A, Kiedrowski L (2003) Inhibition of plasmalemmal Na+/Ca2+ exchange by mitochondrial Na+/Ca2+ exchange inhibitor 7-chloro-5-(2-chlorophenyl)-1,5-dihydro-4,1-benzothiazepin-2(3H)-one (CGP-37157) in cerebellar granule cells. Biochem Pharmacol 66:2409–2411

    Article  CAS  PubMed  Google Scholar 

  41. Neumann JT, Diaz-Sylvester PL, Fleischer S, Copello JA (2011) CGP-37157 inhibits the sarcoplasmic reticulum Ca2+ ATPase and activates ryanodine receptor channels in striated muscle. Mol Pharmacol 79:141–147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chen BS, Roche KW (2007) Regulation of NMDA receptors by phosphorylation. Neuropharmacol 53:362–368

    Article  Google Scholar 

  43. Kann O, Taubenberger N, Huchzermeyer C, Papageorgiou IE, Benninger F, Heinemann U, Kovacs R (2012) Muscarinic receptor activation determines the effects of store-operated Ca2+-entry on excitability and energy metabolism in pyramidal neurons. Cell Calcium 51:40–50

    Article  CAS  PubMed  Google Scholar 

  44. Fu W, Ruangkittisakul A, MacTavish D, Baker GB, Ballanyi K, Jhamandas JH (2013) Activity and metabolism-related Ca2+ and mitochondrial dynamics in co-cultured human fetal cortical neurons and astrocytes. Neuroscience 250:520–535

    Article  CAS  PubMed  Google Scholar 

  45. Spacek J, Harris KM (1997) Three-dimensional organization of smooth endoplasmic reticulum in hippocampal CA1 dendrites and dendritic spines of the immature and mature rat. J Neurosci 17:190–203

    CAS  PubMed  Google Scholar 

  46. Rizzuto R, Pinton P, Carrington W, Fay FS, Fogarty KE, Lifshitz LM, Tuft RA, Pozzan T (1998) Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. Science 280:1763–1766

    Article  CAS  PubMed  Google Scholar 

  47. Szabadkai G, Bianchi K, Varnai P, De Stefani D, Wieckowski MR, Cavagna D, Nagy AI, Balla T, Rizzuto R (2006) Chaperone-mediated coupling of endoplasmic reticulum and mitochondrial Ca2+ channels. J Cell Biol 175:901–911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Pivovarova NB, Pozzo-Miller LD, Hongpaisan J, Andrews SB (2002) Correlated calcium uptake and release by mitochondria and endoplasmic reticulum of CA3 hippocampal dendrites after afferent synaptic stimulation. J Neurosci 22:10653–10661

    CAS  PubMed  Google Scholar 

  49. Pivovarova NB, Hongpaisan J, Andrews SB, Friel DD (1999) Depolarization-induced mitochondrial Ca accumulation in sympathetic neurons: spatial and temporal characteristics. J Neurosci 19:6372–6384

    CAS  PubMed  Google Scholar 

  50. Billups B, Forsythe ID (2002) Presynaptic mitochondrial calcium sequestration influences transmission at mammalian central synapses. J Neurosci 22:5840–5847

    CAS  PubMed  Google Scholar 

  51. David G, Barrett EF (2003) Mitochondrial Ca2+ uptake prevents desynchronization of quantal release and minimizes depletion during repetitive stimulation of mouse motor nerve terminals. J Physiol 548:425–438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Medler K, Gleason EL (2002) Mitochondrial Ca2+ buffering regulates synaptic transmission between retinal amacrine cells. J Neurophysiol 87:1426–1439

    CAS  PubMed  Google Scholar 

  53. Stout AK, Raphael HM, Kanterewicz BI, Klann E, Reynolds IJ (1998) Glutamate-induced neuron death requires mitochondrial calcium uptake. Nat Neurosci 1:366–373

    Article  CAS  PubMed  Google Scholar 

  54. Qiu J, Tan YW, Hagenston AM, Martel MA, Kneisel N, Skehel PA, Wyllie DJ, Bading H, Hardingham GE (2013) Mitochondrial calcium uniporter Mcu controls excitotoxicity and is transcriptionally repressed by neuroprotective nuclear calcium signals. Nat Commun 4:2034

    PubMed  PubMed Central  Google Scholar 

  55. Nicolau SM, Egea J, Lopez MG, Garcia AG (2010) Mitochondrial Na+/Ca2+ exchanger, a new target for neuroprotection in rat hippocampal slices. Biochem Biophys Res Commun 400:140–144

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by Deutsche Forschungsgemeinschaft (DFG Grant Re563/22-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georg Reiser.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 155 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Strokin, M., Reiser, G. Mitochondrial Ca2+ Processing by a Unit of Mitochondrial Ca2+ Uniporter and Na+/Ca2+ Exchanger Supports the Neuronal Ca2+ Influx via Activated Glutamate Receptors. Neurochem Res 41, 1250–1262 (2016). https://doi.org/10.1007/s11064-015-1819-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-015-1819-3

Keywords

Navigation