Skip to main content
Log in

Pituitary Adenylate Cyclase-Activating Polypeptide Receptors Signal via Phospholipase C Pathway to Block Apoptosis in Newborn Rat Retina

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Glutamate induced cell death mechanisms gained considerable attention lately as excessive release of extracellular glutamate was reported to cause neurodegeneration in brain areas including the retina. Conversely, pituitary adenylate cyclase-activating polypeptide (PACAP) was shown to provide neuroprotection through anti-apoptotic effects in the glutamate-model and also in other degeneration assays. Although PACAP is known to orchestrate complex intracellular signaling primarily through cAMP production, the mechanism that mediates the anti-apoptotic effect in glutamate excitotoxicity remains to be clarified. To study this mechanism we induced retinal neurodegeneration in newborn Wistar rats by subcutaneous monosodium-glutamate injection. 100 pmol PACAP and enzyme inhibitors were administered intravitreally. Levels of caspase 3, 9, and phospho-protein kinase A were assessed by Western blots. Changes in cAMP levels were detected employing a competitive immunoassay. We found that cAMP blockade by an adenylyl-cyclase inhibitor (2′,4′-dideoxy-adenosine) did not abrogate the neuroprotective effect of PACAP1-38. We show that following intravitreal PACAP1-38 treatment cAMP was unaltered, consistent with the inhibitor results and phospho-protein kinase A, an effector of the cAMP pathway was also unaffected. On the other hand, blockade of the alternative phosphatidylcholine-specific PLC pathway using an inhibitor (D609CAS) abrogated the neuroprotective effects of PACAP1-38. Our results highlight PACAP1-38 ability in protecting retinal cells against apoptosis through diverse signaling cascades. It seems that at picomolar concentrations, PACAP does not trigger cAMP production, but nonetheless, exerts a significant anti-apoptotic effect through PLC activation. In conclusion, PACAP1-38 may signal via both AC and PLC activation producing the same protective outcome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

DDA:

2′,5′-dideoxy-adenosine

AC:

Adenylyl cyclase

i.v:

Intravitreal

MSG:

Monosodium glutamate

PACAP:

Pituitary adenylate cyclase-activating polypeptide

PLC:

Phospholipase C

s.c:

Subcutaneous

VIP:

Vasoactive intestinal peptide

References

  1. Miyata A, Arimura A, Dahl RR, Minamino N, Uehara A, Jiang L, Culler MD, Coy DH (1989) Isolation of a novel 38 residue-hypothalamic polypeptide which stimulates adenylate cyclase in pituitary cells. Biochem Biophys Res Commun 164(1):567–574

    Article  CAS  PubMed  Google Scholar 

  2. Dickson L, Finlayson K (2009) VPAC and PAC receptors: from ligands to function. Pharmacol Ther 121(3):294–316. doi:10.1016/j.pharmthera.2008.11.006

    Article  CAS  PubMed  Google Scholar 

  3. Botia B, Jolivel V, Burel D, Le Joncour V, Roy V, Naassila M, Benard M, Fournier A, Vaudry H, Vaudry D (2011) Neuroprotective effects of PACAP against ethanol-induced toxicity in the developing rat cerebellum. Neurotox Res 19(3):423–434. doi:10.1007/s12640-010-9186-y

    Article  CAS  PubMed  Google Scholar 

  4. Dohi K, Mizushima H, Nakajo S, Ohtaki H, Matsunaga S, Aruga T, Shioda S (2002) Pituitary adenylate cyclase-activating polypeptide (PACAP) prevents hippocampal neurons from apoptosis by inhibiting JNK/SAPK and p38 signal transduction pathways. Regul Pept 109(1–3):83–88

    Article  CAS  PubMed  Google Scholar 

  5. Masmoudi-Kouki O, Douiri S, Hamdi Y, Kaddour H, Bahdoudi S, Vaudry D, Basille M, Leprince J, Fournier A, Vaudry H, Tonon MC, Amri M (2011) Pituitary adenylate cyclase-activating polypeptide protects astroglial cells against oxidative stress-induced apoptosis. J Neurochem 117(3):403–411. doi:10.1111/j.1471-4159.2011.07185.x

    Article  CAS  PubMed  Google Scholar 

  6. Sanchez A, Rao HV, Grammas P (2009) PACAP38 protects rat cortical neurons against the neurotoxicity evoked by sodium nitroprusside and thrombin. Regul Pept 152(1–3):33–40. doi:10.1016/j.regpep.2008.07.004

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Vaudry D, Gonzalez BJ, Basille M, Yon L, Fournier A, Vaudry H (2000) Pituitary adenylate cyclase-activating polypeptide and its receptors: from structure to functions. Pharmacol Rev 52(2):269–324

    CAS  PubMed  Google Scholar 

  8. Blechman J, Levkowitz G (2013) Alternative splicing of the pituitary adenylate cyclase-activating polypeptide receptor PAC1: mechanisms of fine tuning of brain activity. Front Endocrinol 4:55. doi:10.3389/fendo.2013.00055

    CAS  Google Scholar 

  9. Onoue S, Endo K, Ohshima K, Yajima T, Kashimoto K (2002) The neuropeptide PACAP attenuates beta-amyloid (1-42)-induced toxicity in PC12 cells. Peptides 23(8):1471–1478

    Article  CAS  PubMed  Google Scholar 

  10. Vaudry D, Gonzalez BJ, Basille M, Anouar Y, Fournier A, Vaudry H (1998) Pituitary adenylate cyclase-activating polypeptide stimulates both c-fos gene expression and cell survival in rat cerebellar granule neurons through activation of the protein kinase A pathway. Neuroscience 84(3):801–812

    Article  CAS  PubMed  Google Scholar 

  11. Tomimatsu N, Arakawa Y (2008) Survival-promoting activity of pituitary adenylate cyclase-activating polypeptide in the presence of phosphodiesterase inhibitors on rat motoneurons in culture: cAMP-protein kinase A-mediated survival. J Neurochem 107(3):628–635. doi:10.1111/j.1471-4159.2008.05638.x

    Article  CAS  PubMed  Google Scholar 

  12. Han P, Lucero MT (2005) Pituitary adenylate cyclase activating polypeptide reduces A-type K+ currents and caspase activity in cultured adult mouse olfactory neurons. Neuroscience 134(3):745–756. doi:10.1016/j.neuroscience.2005.05.007

    Article  CAS  PubMed  Google Scholar 

  13. Kanekar S, Gandham M, Lucero MT (2010) PACAP protects against TNFalpha-induced cell death in olfactory epithelium and olfactory placodal cell lines. Mol Cell Neurosci 45(4):345–354. doi:10.1016/j.mcn.2010.07.007

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Vaudry D, Gonzalez BJ, Basille M, Pamantung TF, Fontaine M, Fournier A, Vaudry H (2000) The neuroprotective effect of pituitary adenylate cyclase-activating polypeptide on cerebellar granule cells is mediated through inhibition of the CED3-related cysteine protease caspase-3/CPP32. Proc Natl Acad Sci USA 97(24):13390–13395. doi:10.1073/pnas.97.24.13390

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Tamas A, Gabriel R, Racz B, Denes V, Kiss P, Lubics A, Lengvari I, Reglodi D (2004) Effects of pituitary adenylate cyclase activating polypeptide in retinal degeneration induced by monosodium-glutamate. Neurosci Lett 372(1–2):110–113. doi:10.1016/j.neulet.2004.09.021

    Article  CAS  PubMed  Google Scholar 

  16. Choi DW, Rothman SM (1990) The role of glutamate neurotoxicity in hypoxic-ischemic neuronal death. Annu Rev Neurosci 13:171–182. doi:10.1146/annurev.ne.13.030190.001131

    Article  CAS  PubMed  Google Scholar 

  17. Dreyer EB, Zurakowski D, Schumer RA, Podos SM, Lipton SA (1996) Elevated glutamate levels in the vitreous body of humans and monkeys with glaucoma. Arch Ophthalmol 114(3):299–305

    Article  CAS  PubMed  Google Scholar 

  18. Pulido JE, Pulido JS, Erie JC, Arroyo J, Bertram K, Lu MJ, Shippy SA (2007) A role for excitatory amino acids in diabetic eye disease. Exp Diabetes Res 2007:36150. doi:10.1155/2007/36150

    Article  PubMed Central  PubMed  Google Scholar 

  19. Michaelis EK (1998) Molecular biology of glutamate receptors in the central nervous system and their role in excitotoxicity, oxidative stress and aging. Prog Neurobiol 54(4):369–415

    Article  CAS  PubMed  Google Scholar 

  20. Cohen GM (1997) Caspases: the executioners of apoptosis. Biochem J 326(Pt 1):1–16

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Denes V, Lakk M, Czotter N, Gabriel R (2011) A precise temporal dissection of monosodium glutamate-induced apoptotic events in newborn rat retina in vivo. Neurochem Res 36(8):1464–1474. doi:10.1007/s11064-011-0472-8

    Article  CAS  PubMed  Google Scholar 

  22. Moore MJ, Kanter JR, Jones KC, Taylor SS (2002) Phosphorylation of the catalytic subunit of protein kinase A. Autophosphorylation versus phosphorylation by phosphoinositide-dependent kinase-1. J Biol Chem 277(49):47878–47884. doi:10.1074/jbc.M204970200

    Article  CAS  PubMed  Google Scholar 

  23. Thoreson WB, Witkovsky P (1999) Glutamate receptors and circuits in the vertebrate retina. Prog Retin Eye Res 18(6):765–810

    Article  CAS  PubMed  Google Scholar 

  24. Kuehn MH, Fingert JH, Kwon YH (2005) Retinal ganglion cell death in glaucoma: mechanisms and neuroprotective strategies. Ophthalmol Clin North Am 18(3):383–395. doi:10.1016/j.ohc.2005.04.002

    Article  PubMed  Google Scholar 

  25. Dejda A, Jolivel V, Bourgault S, Seaborn T, Fournier A, Vaudry H, Vaudry D (2008) Inhibitory effect of PACAP on caspase activity in neuronal apoptosis: a better understanding towards therapeutic applications in neurodegenerative diseases. J Mol Neurosci 36(1–3):26–37. doi:10.1007/s12031-008-9087-1

    Article  CAS  PubMed  Google Scholar 

  26. Silveira MS, Costa MR, Bozza M, Linden R (2002) Pituitary adenylyl cyclase-activating polypeptide prevents induced cell death in retinal tissue through activation of cyclic AMP-dependent protein kinase. J Biol Chem 277(18):16075–16080. doi:10.1074/jbc.M110106200

    Article  CAS  PubMed  Google Scholar 

  27. Shoge K, Mishima HK, Saitoh T, Ishihara K, Tamura Y, Shiomi H, Sasa M (1999) Attenuation by PACAP of glutamate-induced neurotoxicity in cultured retinal neurons. Brain Res 839(1):66–73

    Article  CAS  PubMed  Google Scholar 

  28. Racz B, Gallyas F Jr, Kiss P, Tamas A, Lubics A, Lengvari I, Roth E, Toth G, Hegyi O, Verzal Z, Fabricsek C, Reglodi D (2007) Effects of pituitary adenylate cyclase activating polypeptide (PACAP) on the PKA-Bad-14-3-3 signaling pathway in glutamate-induced retinal injury in neonatal rats. Neurotox Res 12(2):95–104

    Article  CAS  PubMed  Google Scholar 

  29. Lelievre V, Pineau N, Du J, Wen CH, Nguyen T, Janet T, Muller JM, Waschek JA (1998) Differential effects of peptide histidine isoleucine (PHI) and related peptides on stimulation and suppression of neuroblastoma cell proliferation. A novel VIP-independent action of PHI via MAP kinase. J Biol Chem 273(31):19685–19690

    Article  CAS  PubMed  Google Scholar 

  30. Njaine B, Martins RA, Santiago MF, Linden R, Silveira MS (2010) Pituitary adenylyl cyclase-activating polypeptide controls the proliferation of retinal progenitor cells through downregulation of cyclin D1. Eur J Neurosci 32(3):311–321. doi:10.1111/j.1460-9568.2010.07286.x

    Article  PubMed  Google Scholar 

  31. Racz B, Tamas A, Kiss P, Toth G, Gasz B, Borsiczky B, Ferencz A, Gallyas F Jr, Roth E, Reglodi D (2006) Involvement of ERK and CREB signaling pathways in the protective effect of PACAP in monosodium glutamate-induced retinal lesion. Ann N Y Acad Sci 1070:507–511. doi:10.1196/annals.1317.070

    Article  CAS  PubMed  Google Scholar 

  32. Barrie AP, Clohessy AM, Buensuceso CS, Rogers MV, Allen JM (1997) Pituitary adenylyl cyclase-activating peptide stimulates extracellular signal-regulated kinase 1 or 2 (ERK1/2) activity in a Ras-independent, mitogen-activated protein Kinase/ERK kinase 1 or 2-dependent manner in PC12 cells. J Biol Chem 272(32):19666–19671

    Article  CAS  PubMed  Google Scholar 

  33. Dickson L, Aramori I, McCulloch J, Sharkey J, Finlayson K (2006) A systematic comparison of intracellular cyclic AMP and calcium signalling highlights complexities in human VPAC/PAC receptor pharmacology. Neuropharmacology 51(6):1086–1098. doi:10.1016/j.neuropharm.2006.07.017

    Article  CAS  PubMed  Google Scholar 

  34. Spengler D, Waeber C, Pantaloni C, Holsboer F, Bockaert J, Seeburg PH, Journot L (1993) Differential signal transduction by five splice variants of the PACAP receptor. Nature 365(6442):170–175. doi:10.1038/365170a0

    Article  CAS  PubMed  Google Scholar 

  35. Braas KM, May V (1999) Pituitary adenylate cyclase-activating polypeptides directly stimulate sympathetic neuron neuropeptide Y release through PAC(1) receptor isoform activation of specific intracellular signaling pathways. J Biol Chem 274(39):27702–27710

    Article  CAS  PubMed  Google Scholar 

  36. Holighaus Y, Mustafa T, Eiden LE (2011) PAC1hop, null and hip receptors mediate differential signaling through cyclic AMP and calcium leading to splice variant-specific gene induction in neural cells. Peptides 32(8):1647–1655. doi:10.1016/j.peptides.2011.06.004

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Mustafa T, Grimaldi M, Eiden LE (2007) The hop cassette of the PAC1 receptor confers coupling to Ca2+ elevation required for pituitary adenylate cyclase-activating polypeptide-evoked neurosecretion. J Biol Chem 282(11):8079–8091. doi:10.1074/jbc.M609638200

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Christopoulos A, Christopoulos G, Morfis M, Udawela M, Laburthe M, Couvineau A, Kuwasako K, Tilakaratne N, Sexton PM (2003) Novel receptor partners and function of receptor activity-modifying proteins. J Biol Chem 278(5):3293–3297. doi:10.1074/jbc.C200629200

    Article  CAS  PubMed  Google Scholar 

  39. McCulloch DA, Lutz EM, Johnson MS, Robertson DN, MacKenzie CJ, Holland PJ, Mitchell R (2001) ADP-ribosylation factor-dependent phospholipase D activation by VPAC receptors and a PAC(1) receptor splice variant. Mol Pharmacol 59(6):1523–1532

    CAS  PubMed  Google Scholar 

  40. Lakk M, Szabo B, Volgyi B, Gabriel R, Denes V (2012) Development-related splicing regulates pituitary adenylate cyclase-activating polypeptide (PACAP) receptors in the retina. Invest Ophthalmol Vis Sci 53(12):7825–7832. doi:10.1167/iovs.12-10417

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The project was supported by the Hungarian Scientific Research Foundation (OTKA K 100144). The authors gratefully acknowledge Paul Witkovsky (New York University, NY, USA) who improved the language of our manuscript and provided useful critical comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viktoria Denes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lakk, M., Denes, V. & Gabriel, R. Pituitary Adenylate Cyclase-Activating Polypeptide Receptors Signal via Phospholipase C Pathway to Block Apoptosis in Newborn Rat Retina. Neurochem Res 40, 1402–1409 (2015). https://doi.org/10.1007/s11064-015-1607-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-015-1607-0

Keywords

Navigation