Skip to main content
Log in

fDWI Evaluation of Hypothalamic Appetite Regulation Pathways in Mice Genetically Deficient in Leptin or Neuropeptide Y

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

We evaluate the contribution of leptin-dependent anorexigenic pathways and neuropeptide Y (NPY)-dependent orexigenic pathways to the changes in hypothalamic water diffusion parameters observed in vivo by functional diffusion weighted MRI (fDWI). Mice genetically deficient in leptin (B6.V-Lep ob/J) or NPY (129S-Npy tm1Rpa/J) and the corresponding wild-type controls, were subjected to sequential isocaloric feeding, fasting and recovery regimes. Non-invasive fDWI measurements were performed under these conditions, and complemented with parallel determinations of food and water consumption, respiratory exchange ratio (RER), locomotor activity and endocrine profiles. Control mice showed significant increases in hypothalamic water diffusion parameters upon fasting, returning to normal values in the recovery period. Leptin deficient mice depicted permanently increased water diffusion parameters under all feeding conditions as compared to wild type controls, without important changes upon fasting or recovery. These results paralleled sustained increases in food and water intake, significantly augmented body weight, and decreased RER values or locomotor activity, thus configuring an obese phenotype. NPY-deficient mice showed significantly reduced increases (or even slight decreases) in the water diffusion parameters upon fasting as compared to wild type controls, paralleled by decreased food and water intake during the recovery period. In conclusion, leptin deficiency results in sustained orexigenic stimulation, leading to increased water diffusion parameters, while NPY deficiency lead to reduced orexigenic stimulation and water diffusion parameters. Diffusion changes are proposed to reflect net astrocytic volume changes induced by the balance between the orexigenic and anorexigenic firings of AgRP/NPY and POMC/CART neurons, respectively. Together, our results suggest that fDWI provides an adequate tool to investigate hypothalamic appetite disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

A–P:

Antero–posterior direction

BOLD:

Blood oxygenation level dependent contrast

Dslow :

Slow diffusion coefficient

Dfast :

Fast diffusion coefficient

FDP:

Fast diffusion phase

fDWI:

Functional diffusion weighted magnetic resonance imaging

H–F:

Head–foot direction

L–R:

Left–right direction

MRI:

Magnetic resonance imaging

NPY:

Neuropeptide Y

PET:

Positron emission tomography

RER:

Respiratory exchange ratio

SDP:

Slow diffusion phase

References

  1. Coll AP, Farooqi IS, O’Rahilly S (2007) The hormonal control of food intake. Cell 129(2):251–262

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Morton GJ, Cummings DE, Baskin DG, Barsh GS, Schwartz MW (2006) Central nervous system control of food intake and body weight. Nature 443(7109):289–295

    Article  CAS  PubMed  Google Scholar 

  3. Dietrich MO, Horvath TL (2013) Hypothalamic control of energy balance: insights into the role of synaptic plasticity. Trends Neurosci 36(2):65–73

    Article  CAS  PubMed  Google Scholar 

  4. Schwartz MW, Woods SC, Porte D Jr, Seeley RJ, Baskin DG (2000) Central nervous system control of food intake. Nature 404(6778):661–671

    CAS  PubMed  Google Scholar 

  5. Levin BE, Magnan C, Dunn-Meynell A, Le Foll C (2011) Metabolic sensing and the brain: who, what, where, and how? Endocrinology 152(7):2552–2557

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. McEwen BS (1989) Endocrine effects on the brain and their relationship to behavior. In: Siegel G, Agranoff B, Albers RW, Molinoff P (eds) Basic neurochemistry. Raven Press, New York, pp 893–913

    Google Scholar 

  7. Tang-Christensen M, Vrang N, Ortmann S, Bidlingmaier M, Horvath TL, Tschop M (2004) Central administration of ghrelin and agouti-related protein (83-132) increases food intake and decreases spontaneous locomotor activity in rats. Endocrinology 145(10):4645–4652

    Article  CAS  PubMed  Google Scholar 

  8. Cranston I, Reed LJ, Marsden PK, Amiel SA (2001) Changes in regional brain (18)F-fluorodeoxyglucose uptake at hypoglycemia in type 1 diabetic men associated with hypoglycemia unawareness and counter-regulatory failure. Diabetes 50(10):2329–2336

    Article  CAS  PubMed  Google Scholar 

  9. Belanger M, Allaman I, Magistretti PJ (2011) Brain energy metabolism: focus on astrocyte-neuron metabolic cooperation. Cell Metab 14(6):724–738

    Article  CAS  PubMed  Google Scholar 

  10. Smeets PA, de Graaf C, Stafleu A, van Osch MJ, van der Grond J (2005) Functional magnetic resonance imaging of human hypothalamic responses to sweet taste and calories. Am J Clin Nutr 82(5):1011–1016

    CAS  PubMed  Google Scholar 

  11. De Silva A, Salem V, Matthews PM, Dhillo WS (2012) The use of functional MRI to study appetite control in the CNS. Exp Diabetes Res 2012:764017

    Article  PubMed Central  PubMed  Google Scholar 

  12. Lizarbe B, Benitez A, Pelaez Brioso GA, Sanchez-Montanes M, Lopez-Larrubia P, Ballesteros P et al (2013) Hypothalamic metabolic compartmentation during appetite regulation as revealed by magnetic resonance imaging and spectroscopy methods. Front Neuroenerg 5:6

    Article  CAS  Google Scholar 

  13. Kuo YT, So PW, Parkinson JR, Yu WS, Hankir M, Herlihy AH et al (2010) The combined effects on neuronal activation and blood-brain barrier permeability of time and n-3 polyunsaturated fatty acids in mice, as measured in vivo using MEMRI. NeuroImage 50(4):1384–1391

    Article  CAS  PubMed  Google Scholar 

  14. Parkinson JR, Chaudhri OB, Kuo YT, Field BC, Herlihy AH, Dhillo WS et al (2009) Differential patterns of neuronal activation in the brainstem and hypothalamus following peripheral injection of GLP-1, oxyntomodulin and lithium chloride in mice detected by manganese-enhanced magnetic resonance imaging (MEMRI). NeuroImage 44(3):1022–1031

    Article  PubMed  Google Scholar 

  15. Kuo YT, Herlihy AH, So PW, Bell JD (2006) Manganese-enhanced magnetic resonance imaging (MEMRI) without compromise of the blood-brain barrier detects hypothalamic neuronal activity in vivo. NMR Biomed 19(8):1028–1034

    Article  CAS  PubMed  Google Scholar 

  16. Le Bihan D (2003) Looking into the functional architecture of the brain with diffusion MRI. Nat Rev Neurosci 4(6):469–480

    Article  PubMed  Google Scholar 

  17. Lizarbe B, Benitez A, Sanchez-Montanes M, Lago-Fernandez LF, Garcia-Martin ML, Lopez-Larrubia P et al (2013) Imaging hypothalamic activity using diffusion weighted magnetic resonance imaging in the mouse and human brain. NeuroImage 64:448–457

    Article  PubMed  Google Scholar 

  18. Le Bihan D, Johansen-Berg H (2012) Diffusion MRI at 25: exploring brain tissue structure and function. NeuroImage 61(2):324–341

    Article  PubMed Central  PubMed  Google Scholar 

  19. Tschop MH, Speakman JR, Arch JR, Auwerx J, Bruning JC, Chan L et al (2012) A guide to analysis of mouse energy metabolism. Nat Methods 9(1):57–63

    Article  Google Scholar 

  20. Speakman JR (2013) Measuring energy metabolism in the mouse—theoretical, practical, and analytical considerations. Front Physiol 4:34

    Article  PubMed Central  PubMed  Google Scholar 

  21. Ferrannini E (1988) The theoretical bases of indirect calorimetry: a review. Metabolism 37(3):287–301

    Article  CAS  PubMed  Google Scholar 

  22. Upton G, Cook IT (1996) Understanding statistics. Oxford University Press, Oxford

    Google Scholar 

  23. Jequier E (2002) Leptin signaling, adiposity, and energy balance. Ann N Y Acad Sci 967:379–388

    Article  CAS  PubMed  Google Scholar 

  24. Clement K, Vaisse C, Lahlou N, Cabrol S, Pelloux V, Cassuto D et al (1998) A mutation in the human leptin receptor gene causes obesity and pituitary dysfunction. Nature 392(6674):398–401

    Article  CAS  PubMed  Google Scholar 

  25. Delgado TC, Violante IR, Nieto-Charques L, Cerdan S (2011) Neuroglial metabolic compartmentation underlying leptin deficiency in the obese ob/ob mice as detected by magnetic resonance imaging and spectroscopy methods. J Cereb Blood Flow Metab 31(12):2257–2266

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Buckman LB, Thompson MM, Moreno HN, Ellacott KL (2013) Regional astrogliosis in the mouse hypothalamus in response to obesity. J Comp Neurol 521(6):1322–1333

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Kim JG, Suyama S, Koch M, Jin S, Argente-Arizon P, Argente J et al (2014) Leptin signaling in astrocytes regulates hypothalamic neuronal circuits and feeding. Nat Neurosci 17(7):908–910

    Article  CAS  PubMed  Google Scholar 

  28. Beck B (2006) Neuropeptide Y in normal eating and in genetic and dietary-induced obesity. Philos Trans R Soc Lond B Biol Sci 361(1471):1159–1185

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Bannon AW, Seda J, Carmouche M, Francis JM, Norman MH, Karbon B et al (2000) Behavioral characterization of neuropeptide Y knockout mice. Brain Res 868(1):79–87

    Article  CAS  PubMed  Google Scholar 

  30. Thaler JP, Yi CX, Schur EA, Guyenet SJ, Hwang BH, Dietrich MO et al (2012) Obesity is associated with hypothalamic injury in rodents and humans. J Clin Invest 122(1):153–162

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Le Bihan D, Urayama S, Aso T, Hanakawa T, Fukuyama H (2006) Direct and fast detection of neuronal activation in the human brain with diffusion MRI. Proc Natl Acad Sci USA 103(21):8263–8268

    Article  PubMed Central  PubMed  Google Scholar 

  32. Hsuchou H, He Y, Kastin AJ, Tu H, Markadakis EN, Rogers RC et al (2009) Obesity induces functional astrocytic leptin receptors in hypothalamus. Brain 132(Pt 4):889–902

    PubMed Central  PubMed  Google Scholar 

  33. Iacobas DA, Iacobas S, Urban-Maldonado M, Scemes E, Spray DC (2008) Similar transcriptomic alterations in Cx43 knockdown and knockout astrocytes. Cell Commun Adhes 15(1):195–206

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Iacobas DA, Scemes E, Spray DC (2004) Gene expression alterations in connexin null mice extend beyond the gap junction. Neurochem Int 45(2–3):243–250

    Article  CAS  PubMed  Google Scholar 

  35. Lin D, Boyle MP, Dollar P, Lee H, Lein ES, Perona P et al (2011) Functional identification of an aggression locus in the mouse hypothalamus. Nature 470(7333):221–226

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Swaab DF, Hofman MA, Mirmiran M, Ravid R, van Leewen FW (1992) The human hypothalamus in health and disease. Elsevier, Amsterdam

    Google Scholar 

  37. Ganong WF (1993) Central regulation of visceral function. Review of medical physiology. Appleton & Lange, Connecticut, pp 208–230

    Google Scholar 

Download references

Acknowledgments

Authors wish to express their gratitude to Drs. Carlota Largo and Victor Caz from the Hospital Universitario La Paz for the hormonal tests, to Mr. Javier Pérez CSIC for professional drafting of the illustrations, to Mrs. Teresa Navarro CSIC for expert maintenance of the MRI instrumentation and to Mrs. Patricia Sánchez CSIC for proficient technical assistance with animal housing and handling. The Phenomaster and MRI instrumentations are Central CSIC Research Resources of the Institute of Biomedical Research “Alberto Sols”. This work was supported in part by Grants SAF-2008-01327, SAF2011-23622 and IPT-2012-1331-006000 to SC, Grant CTQ-2010-20960-C02-02 to PLL, Grants S-BIO-2006-0170 and S2010/BMD-2349 to S.C. and PLL. BL held a predoctoral fellowship from the Spanish Ministry of Science and Technology (BES 2009-027615).

Conflict of interest

Authors disclose no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastián Cerdán.

Additional information

Special Issue: In Honor of Dr. Gerald Dienel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lizarbe, B., López-Larrubia, P. & Cerdán, S. fDWI Evaluation of Hypothalamic Appetite Regulation Pathways in Mice Genetically Deficient in Leptin or Neuropeptide Y. Neurochem Res 40, 2628–2638 (2015). https://doi.org/10.1007/s11064-015-1596-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-015-1596-z

Keywords

Navigation