Skip to main content
Log in

mTOR and Erk1/2 Signaling in the Cerebrospinal Fluid-Contacting Nucleus is Involved in Neuropathic Pain

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The cerebrospinal fluid-contacting nucleus (CSF-CN) has been demonstrated to be involved in neuropathic pain, but the underlying molecular mechanisms remain unclear. Previous work has shown that mTOR and ERK1/2 are important signaling pathways regulating neuropathic pain. However, studies on the interactions between these major pathways in neuropathic pain are very rare. Therefore, the purpose of this study is to determine whether mTOR and ERK1/2 exist in the CSF-CN and elucidate their alterations in neuropathic pain, especially, the crosstalk between them. Our results showed that mTOR and ERK1/2 were distributed in the CSF-CN, and their expression levels were increased in chronic constriction injury (CCI)-induced neuropathic pain. Furthermore, the injection of both the mTOR antagonist rapamycin and the ERK1/2 antagonist U0126 into the lateral ventricle of the brain attenuated CCI-induced neuropathic pain. Inhibition of the ERK1/2 pathway had little impact on mTOR signaling, but inhibition of the mTOR pathway significantly increased ERK/2 signaling. The coadministration of rapamycin and U0126 inhibited the rapamycin-induced upregulation of ERK, and had a greater effect on pain behaviors than did the single-drug administrations. These data extend our understanding of the relationship between mTOR and ERK in the supraspinal site and demonstrate that the CSF-CN participates in neuropathic pain via the regulation of mTOR and ERK1/2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Costigan M, Scholz J, Woolf CJ (2009) Neuropathic pain: a maladaptive response of the nervous system to damage. Annu Rev Neurosci 32:1–32

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Navarro X, Vivo M, Valero-Cabre A (2007) Neural plasticity after peripheral nerve injury and regeneration. Prog Neurobiol 82(4):163–201

    Article  CAS  PubMed  Google Scholar 

  3. Vignot S, Faivre S, Aguirre D et al (2005) mTOR-targeted therapy of cancer with rapamycin derivatives. Ann Oncol 16(4):525–537

    Article  CAS  PubMed  Google Scholar 

  4. Yang Z, Klionsky DJ (2010) Mammalian autophagy: core molecular machinery and signaling regulation. Curr Opin Cell Biol 22(2):124–131

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Gingras AC, Raught B, Sonenberg N (1999) eIF4 initiation factors: effectors of mRNA recruitment to ribosomes and regulators of translation. Annu Rev Biochem 68:913–963

    Article  CAS  PubMed  Google Scholar 

  6. Costa-Mattioli M, Sossin WS, Klann E, Sonenberg N (2009) Translational control of long-lasting synaptic plasticity and memory. Neuron 61:10–26

    Article  CAS  PubMed  Google Scholar 

  7. Jimenez-Diaz L, Geranton SM, Passmore GM et al (2008) Local translation in primary afferent fibers regulates nociception. PLoS ONE 3(4):e1961

    Article  PubMed Central  PubMed  Google Scholar 

  8. Geranton SM, Jimenez-Diaz L, Torsney C et al (2009) A rapamycin-sensitive signaling pathway is essential for the full expression of persistent pain states. J Neurosci 29(47):15017–15027

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Zhang W, Sun XF, Bo JH et al (2009) Activation of mTOR in the spinal cord is required for pain hypersensitivity induced by chronic constriction injury in mice. Pharmacol Biochem Behav 111:64–70

    Article  Google Scholar 

  10. Obara I, Tochiki KK, Geranton SM et al (2011) Systemic inhibition of the mammalian target of rapamycin (mTOR) pathway reduces neuropathic pain in mice. Pain 152(11):2582–2595

    Article  CAS  PubMed  Google Scholar 

  11. Ji RR, Gereau RW 4th, Malcangio M et al (2009) MAP kinase and pain. Brain Res Rev 60(1):135–148

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Ji RR, Baba H, Brenner GJ et al (1999) Nociceptive-specific activation of ERK in spinal neurons contributes to pain hypersensitivity. Nat Neurosci 2(12):1114–1119

    Article  CAS  PubMed  Google Scholar 

  13. Carracedo A, Ma L, Teruya-Feldstein J et al (2008) Inhibition of mTORC1 leads to MAPK pathway activation through a PI3 K-dependent feedback loop in human cancer. J Clin Invest 118(9):3065–3074

    PubMed Central  CAS  PubMed  Google Scholar 

  14. Vigh B, Manzano e Silva MJ, Frank CL et al (2004) The system of cerebrospinal fluid-contacting neurons. Its supposed role in the nonsynaptic signal transmission of the brain. Histol Histopath 16:607–628

    Google Scholar 

  15. Zhang LC, Zeng YM, Ting J et al (2003) The distributions and signaling directions of the cerebrospinal fluid contacting neurons in the parenchyma of a rat brain. Brain Res 989:1–8

    Article  CAS  PubMed  Google Scholar 

  16. Lu X, Geng X, Zhang L et al (2009) Substance P expression in the distal cerebrospinal fluid-contacting neurons and spinal trigeminal nucleus in formalin-induced the orofacial inflammatory pain in rats. Brain Res Bull 78:139–144

    Article  CAS  PubMed  Google Scholar 

  17. Wang J, Zhang S, Li L et al (2014) Involvement of Wnt5a within the cerebrospinal fluid-contacting nucleus in nerve injury-induced neuropathic pain. Int J Neurosci 125(2):147–153

    Article  PubMed  Google Scholar 

  18. Liu H, Yan WW, Lu XX et al (2014) Role of the cerebrospinal fluid-contacting nucleus in the descending inhibition of spinal pain transmission. Exp Neurol 261C:475–485

    Article  Google Scholar 

  19. Wang CG, Ding YL, Zheng TF et al (2013) Extracellular signal-regulated kinase 5 in the cerebrospinal fluid: contacting nucleus contributes to morphine physical dependence in rats. J Mol Neurosci 50(1):215–220

    Article  CAS  PubMed  Google Scholar 

  20. Wahlbeck K, Sundblom M, Kalso E et al (1996) Elevated plasma vasopressin and normal cerebrospinal fluid angiotensin-converting enzyme in chronic pain disorder. Biol Psychiatry 40(10):994–999

    Article  CAS  PubMed  Google Scholar 

  21. McLean SA, Williams DA, Stein PK et al (2006) Cerebrospinal fluid corticotropin-releasing factor concentration is associated with pain but not fatigue symptoms in patients with fibromyalgia. Neuropsychopharmacology 31(12):2776–2782

    Article  CAS  PubMed  Google Scholar 

  22. Bennett GJ, Xie YK (1988) A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man. Pain 33:87–107

    Article  CAS  PubMed  Google Scholar 

  23. Popiolek-Barczyk K, Makuch W, Rojewska E et al (2014) Inhibition of intracellular signaling pathways NF-kappaB and MEK1/2 attenuates neuropathic pain development and enhances morphine analgesia. Pharmacol Rep 66(5):845–851

    Article  CAS  PubMed  Google Scholar 

  24. Wang XY, Yan WW, Zhang XL et al (2014) ASIC3 in the cerebrospinal fluid-contacting nucleus of brain parenchyma contributes to inflammatory pain in rats. Neurol Res 36(3):270–275

    Article  CAS  PubMed  Google Scholar 

  25. Asante CO, Wallace VC, Dickenson AH (2010) Mammalian target of rapamycin signaling in the spinal cord is required for neuronal plasticity and behavioral hypersensitivity associated with neuropathy in the rat. J Pain 11(12):1356–1367

    Article  CAS  PubMed  Google Scholar 

  26. Asante CO, Wallace VC, Dickenson AH (2009) Formalin-induced behavioural hypersensitivity and neuronal hyperexcitability are mediated by rapid protein synthesis at the spinal level. Mol Pain 5:27

    Article  PubMed Central  PubMed  Google Scholar 

  27. Xu Q, Fitzsimmons B, Steinauer J et al (2011) Spinal phosphinositide 3-kinase-Akt-mammalian target of rapamycin signaling cascades in inflammation-induced hyperalgesia. J Neurosci 31(6):2113–2124

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Shih MH, Kao SC, Wang W et al (2012) Spinal cord NMDA receptor-mediated activation of mammalian target of rapamycin is required for the development and maintenance of bone cancer-induced pain hypersensitivities in rats. J Pain 13(4):338–349

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Zhang Y, Cai G, Ni X, Sun J (2007) The role of ERK activation in the neuronal excitability in the chronically compressed dorsal root ganglia. Neurosci Lett 419:153–157

    Article  CAS  PubMed  Google Scholar 

  30. Dai J, Bercury KK, Macklin WB (2014) Interaction of mTOR and Erk1/2 signaling to regulate oligodendrocyte differentiation. Glia. doi:10.1002/glia.22729

    Google Scholar 

  31. Wu TT, Zhao ZJ, Xu C et al (2011) Distribution of TRPC6 in the cerebrospinal fluid-contacting nucleus of rat brain parenchyma and its expression in morphine dependence and withdrawal. Neurochem Res 36(12):2316–2321

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was funded by the National Natural Science. Foundation of China (81371243) and the Natural Science Foundation of Jiangsu Province (BK2012580).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Licai Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, G., Lu, X., Zhang, S. et al. mTOR and Erk1/2 Signaling in the Cerebrospinal Fluid-Contacting Nucleus is Involved in Neuropathic Pain. Neurochem Res 40, 1053–1062 (2015). https://doi.org/10.1007/s11064-015-1564-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-015-1564-7

Keywords

Navigation