Skip to main content
Log in

The Subcellular Localization of GABA Transporters and Its Implication for Seizure Management

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The ability to modulate the synaptic GABA levels has been demonstrated by using the clinically effective and selective GAT1 inhibitor tiagabine [(R)-N-[4,4-bis(3-methyl-2-thienyl)-3-butenyl]nipecotic acid]. N-[4,4-bis(3-methyl-2-thienyl)-3-butenyl]-3-hydroxy-4-(methylamino)-4,5,6,7-tetrahydrobenzo[d]isoxazol-3-ol (EF1502) which not only inhibits GAT1 like tiagabine but also BGT1 has been shown to modulate extrasynaptic GABA levels. The simultaneous inhibition of synaptic and extrasynaptic GABA transporters using tiagabine and EF1502, respectively has been demonstrated to exert a synergistic anticonvulsant effect in several seizure models in mice. The pharmacological profile of these and similar compounds has been thoroughly investigated in in vitro systems, comparing the GAT subtype selectivity with the ability to inhibit GABA uptake in primary cultures of neurons and astrocytes. However, an exact explanation has not yet been found. In the present study, the ability of GATs to form homo and/or heterodimers was investigated as well as to which membrane micro environment the GATs reside. To investigate dimerization of GATs, fusion proteins of GATs tagged with either yellow fluorescent protein or cerulean fluorescent protein were made and fluorescence resonance energy transfer (FRET) was measured. It was found that GATs form both homo- and hetero-dimers in N2A and HEK-293 cells. Microdomain localization of GATs as investigated by detergent resistant membrane fractions after treatment of tissue with Brij-98 or Triton X-100 revealed that BGT1 and GAT1 mostly localize to non-membrane rafts independent of the detergent used. However, GAT3 localizes to membrane rafts when using Brij-98. Taken together, these results suggest that the observed hetero dimerization of GATs in the FRET study is unlikely to have functional implications since the GATs are located to very different cellular compartments and cell types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Madsen KK, Ebert B, Clausen RP, Krogsgaard-Larsen P, Schousboe A, White HS (2011) Selective GABA transporter inhibitors tiagabine and EF1502 exhibit mechanistic differences in their ability to modulate the ataxia and anticonvulsant action of the extrasynaptic GABA(A) receptor agonist gaboxadol. J Pharmacol Exp Ther 338:214–219

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. White HS, Watson WP, Hansen SL, Slough S, Perregaard J, Sarup A, Bolvig T, Petersen G, Larsson OM, Clausen RP, Frølund B, Falch E, Krogsgaard-Larsen P, Schousboe A (2005) First demonstration of a functional role for central nervous system betaine/{gamma}-aminobutyric acid transporter (mGAT2) based on synergistic anticonvulsant action among inhibitors of mGAT1 and mGAT2. J Pharmacol Exp Ther 312:866–874

    Article  CAS  PubMed  Google Scholar 

  3. Nielsen EB, Suzdak PD, Andersen KE, Knutsen LJ, Sonnewald U, Braestrup C (1991) Characterization of tiagabine (NO-328), a new potent and selective GABA uptake inhibitor. Eur J Pharmacol 196:257–266

    Article  CAS  PubMed  Google Scholar 

  4. Schousboe A, Bak LK, Waagepetersen HS (2013) Astrocytic control of biosynthesis and turnover of the neurotransmitters glutamate and GABA. Front Endocrinol (Lausanne) 4:102

    Google Scholar 

  5. Bender AS, Norenberg MD (2000) Effect of ammonia on GABA uptake and release in cultured astrocytes. Neurochem Int 36:389–395

    Article  CAS  PubMed  Google Scholar 

  6. Schousboe A, Waagepetersen HS, Leke R, Bak LK (2014) Effects of hyperammonemia on brain energy metabolism: controversial findings in vivo and in vitro. Metab Brain Dis 29:913–917

  7. Schousboe A, Madsen KK, Barker-Haliski ML, White HS (2014) The GABA synapse as a target for antiepileptic drugs: a historical overview focused on GABA transporters. Neurochem Res 39:1980–1987

  8. Conti F, Melone M, De Biasi S, Minelli A, Brecha NC, Ducati A (1998) Neuronal and glial localization of GAT-1, a high-affinity gamma-aminobutyric acid plasma membrane transporter, in human cerebral cortex: with a note on its distribution in monkey cortex. J Comp Neurol 396:51–63

    Article  CAS  PubMed  Google Scholar 

  9. Borden LA (1996) GABA transporter heterogeneity: pharmacology and cellular localization. Neurochem Int 29:335–356

    Article  CAS  PubMed  Google Scholar 

  10. Minelli A, DeBiasi S, Brecha NC, Zuccarello LV, Conti F (1996) GAT-3, a high-affinity GABA plasma membrane transporter, is localized to astrocytic processes, and it is not confined to the vicinity of GABAergic synapses in the cerebral cortex. J Neurosci 16:6255–6264

    CAS  PubMed  Google Scholar 

  11. Conti F, Zuccarello LV, Barbaresi P, Minelli A, Brecha NC, Melone M (1999) Neuronal, glial, and epithelial localization of gamma-aminobutyric acid transporter 2, a high-affinity gamma-aminobutyric acid plasma membrane transporter, in the cerebral cortex and neighboring structures. J Comp Neurol 409:482–494

    Article  CAS  PubMed  Google Scholar 

  12. Liu QR, Lopez-Corcuera B, Mandiyan S, Nelson H, Nelson N (1993) Molecular characterization of four pharmacologically distinct gamma-aminobutyric acid transporters in mouse brain [corrected]. J Biol Chem 268:2106–2112

    CAS  PubMed  Google Scholar 

  13. Borden LA, Smith KE, Gustafson EL, Branchek TA, Weinshank RL (1995) Cloning and expression of a betaine/GABA transporter from human brain. J Neurochem 64:977–984

    Article  CAS  PubMed  Google Scholar 

  14. Zhu XM, Ong WY (2004) A light and electron microscopic study of betaine/GABA transporter distribution in the monkey cerebral neocortex and hippocampus. J Neurocytol 33:233–240

    Article  CAS  PubMed  Google Scholar 

  15. Zhou Y, Holmseth S, Hua R, Lehre AC, Olofsson AM, Poblete-Naredo I, Kempson SA, Danbolt NC (2012) The betaine-GABA transporter (BGT1, slc6a12) is predominantly expressed in the liver and at lower levels in the kidneys and at the brain surface. Am J Physiol Renal Physiol 302:F316–F328

    Article  CAS  PubMed  Google Scholar 

  16. Pietrini G, Suh YJ, Edelmann L, Rudnick G, Caplan MJ (1994) The axonal gamma-aminobutyric acid transporter GAT-1 is sorted to the apical membranes of polarized epithelial cells. J Biol Chem 269:4668–4674

    CAS  PubMed  Google Scholar 

  17. Ahn J, Mundigl O, Muth TR, Rudnick G, Caplan MJ (1996) Polarized expression of GABA transporters in Madin–Darby canine kidney cells and cultured hippocampal neurons. J Biol Chem 271:6917–6924

    Article  CAS  PubMed  Google Scholar 

  18. Madsen KK, Clausen RP, Larsson OM, Krogsgaard-Larsen P, Schousboe A, White HS (2009) Synaptic and extrasynaptic GABA transporters as targets for anti-epileptic drugs. J Neurochem 109(Suppl 1):139–144

    Article  CAS  PubMed  Google Scholar 

  19. Hertz E, Yu ACH, Hertz L, Juurlink BHJ, Schousboe A (1989) Preparation of primary cultures of mouse cortical neurons. In: Shahar A, de Vellis J, Vernadakis A, Haber B (eds) A dissection and tissue culture manual of the nervous system. Alan R. Liss Inc, New York, pp 183–186

    Google Scholar 

  20. Hertz L, Juurlink BHJ, Hertz E, Fosmark H, Schousboe A (1989) Preparation of primary cultures of mouse (rat) astrocytes. In: Shahar A, de Vellis J, Vernadakis A, Haber B (eds) A dissection and tissue culture manual of the nervous system. Alan R. Liss Inc, New York, pp 105–108

    Google Scholar 

  21. Hertz L, Juurlink BHJ, Szuchet S (1985) Cell Cultures. In: Lajtha A (ed) Handbook of Neurochemistry. Plenum Publishing Corporation, New York, pp 603–653

    Google Scholar 

  22. White HS, Sarup A, Bolvig T, Kristensen AS, Petersen G, Nelson N, Pickering DS, Larsson OM, Frølund B, Krogsgaard-Larsen P, Schousboe A (2002) Correlation between anticonvulsant activity and inhibitory action on glial gamma-aminobutyric acid uptake of the highly selective mouse gamma-aminobutyric acid transporter 1 inhibitor 3-hydroxy-4-amino-4,5,6,7-tetrahydro-1,2-benzisoxazole and its N-alkylated analogs. J Pharmacol Exp Ther 302:636–644

    Article  CAS  PubMed  Google Scholar 

  23. Dalskov SM, Immerdal L, Niels-Christiansen LL, Hansen GH, Schousboe A, Danielsen EM (2005) Lipid raft localization of GABA A receptor and Na+, K+-ATPase in discrete microdomain clusters in rat cerebellar granule cells. Neurochem Int 46:489–499

    Article  CAS  PubMed  Google Scholar 

  24. Bedoukian MA, Weeks AM, Partin KM (2006) Different domains of the AMPA receptor direct stargazin-mediated trafficking and stargazin-mediated modulation of kinetics. J Biol Chem 281:23908–23921

    Article  CAS  PubMed  Google Scholar 

  25. Larsson OM, Griffiths R, Allen IC, Schousboe A (1986) Mutual inhibition kinetic analysis of gamma-aminobutyric acid, taurine, and beta-alanine high-affinity transport into neurons and astrocytes: evidence for similarity between the taurine and beta-alanine carriers in both cell types. J Neurochem 47:426–432

    Article  CAS  PubMed  Google Scholar 

  26. Chen Y, Periasamy A (2006) Intensity range based quantitative FRET data analysis to localize protein molecules in live cell nuclei. J Fluoresc 16:95–104

    Article  CAS  PubMed  Google Scholar 

  27. Bolvig T, Larsson OM, Pickering DS, Nelson N, Falch E, Krogsgaard-Larsen P, Schousboe A (1999) Action of bicyclic isoxazole GABA analogues on GABA transporters and its relation to anticonvulsant activity. Eur J Pharmacol 375:367–374

    Article  CAS  PubMed  Google Scholar 

  28. Scholze P, Freissmuth M, Sitte HH (2002) Mutations within an intramembrane leucine heptad repeat disrupt oligomer formation of the rat GABA transporter 1. J Biol Chem 277:43682–43690

    Article  CAS  PubMed  Google Scholar 

  29. Hill WG, An B, Johnson JP (2002) Endogenously expressed epithelial sodium channel is present in lipid rafts in A6 cells. J Biol Chem 277:33541–33544

    Article  CAS  PubMed  Google Scholar 

  30. Mishra S, Joshi PG (2007) Lipid raft heterogeneity: an enigma. J Neurochem 103(Suppl 1):135–142

    Article  CAS  PubMed  Google Scholar 

  31. Müller HK, Wiborg O, Haase J (2006) Subcellular redistribution of the serotonin transporter by secretory carrier membrane protein 2. J Biol Chem 281:28901–28909

    Article  PubMed  Google Scholar 

  32. Storustovu SI, Ebert B (2006) Pharmacological characterization of agonists at delta-containing GABAA receptors: functional selectivity for extrasynaptic receptors is dependent on the absence of gamma2. J Pharmacol Exp Ther 316:1351–1359

    Article  CAS  PubMed  Google Scholar 

  33. Wafford KA, Ebert B (2006) Gaboxadol—a new awakening in sleep. Curr Opin Pharmacol 6:30–36

    Article  CAS  PubMed  Google Scholar 

  34. Cremers T, Ebert B (2007) Plasma and CNS concentrations of Gaboxadol in rats following subcutaneous administration. Eur J Pharmacol 562:47–52

    Article  CAS  PubMed  Google Scholar 

  35. Vogensen SB, Jorgensen L, Madsen KK, Borkar N, Wellendorph P, Skovgaard-Petersen J, Schousboe A, White HS, Krogsgaard-Larsen P, Clausen RP (2013) Selective mGAT2 (BGT-1) GABA uptake inhibitors: design, synthesis, and pharmacological characterization. J Med Chem 56:2160–2164

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Ph.D. Steven S. Vogel, National Institute of Alcohol Abuse and Alcoholism, Bethesda, Maryland (20892), for providing cDNA of Cerulean and Venus and Professor Kathryn M. Partin, Colorado State University, Fort Collins (80523-1617), for providing the positive FRET constructs of AMPA receptors tagged with CFP and YFP (R1i15CFP and R1i46YFP). The work has been financially supported by the Carlsberg Foundation (2009_01_0501).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karsten K. Madsen.

Additional information

Special Issue: In Honor of Michael Norenberg.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madsen, K.K., Hansen, G.H., Danielsen, E.M. et al. The Subcellular Localization of GABA Transporters and Its Implication for Seizure Management. Neurochem Res 40, 410–419 (2015). https://doi.org/10.1007/s11064-014-1494-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-014-1494-9

Keywords

Navigation