Skip to main content

Advertisement

Log in

Computational Identification and Experimental Validation of MicroRNAs Binding to the Fragile X Syndrome Gene Fmr1

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

MicroRNAs (miRNAs) usually bind to their target mRNAs through imperfect base pairing in the 3′-untranslated regions (3′ UTRs) and regulate target gene expression via post-transcriptional suppression. In recent years, computational approaches to predict miRNA targets have facilitated the identification of potential target sites. In this study, we used three programs TargetScan, miRDB and miRanda to predict potential miRNA binding sites to the fragile X gene Fmr1 and picked out 61 miRNAs which were predicted by all three programs for further investigation. Excitingly, 5 out of these miRNAs, miR-23a, miR-32, miR-124, miR-335-5p and miR-350, were experimentally verified by luciferase reporter assays. Furthermore, overexpression of miR-124 in mouse embryonic neural progenitor cells (eNPC) could not only significantly reduce Fmr1 level, but also increase Cdk4 and cyclin D1 levels which coincidently promoted eNPC proliferation. Our results imply that miR-124 plays an important role in the proliferation of mouse embryonic stem cells by promoting Cdk4 and cyclin D1 expression through directly inhibiting Fmr1 expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bartel DP, Chen CZ (2004) Micromanagers of gene expression: the potentially widespread influence of metazoan microRNAs. Nat Rev Genet 5:396–400

    Article  CAS  PubMed  Google Scholar 

  2. Guo H, Ingolia NT, Weissman JS, Bartel DP (2010) Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 466:835–840

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Chekulaeva M, Filipowicz W (2009) Mechanisms of miRNA-mediated post-transcriptional regulation in animal cells. Curr Opin Cell Biol 21:452–460

    Article  CAS  PubMed  Google Scholar 

  4. Ishino Y, Hayashi Y, Naruse M, Tomita K, Sanbo M, Fuchigami T, Fujiki R, Hirose K, Toyooka Y, Fujimori T, Ikenaka K, Hitoshi S (2014) Bre1a, a histone H2B ubiquitin ligase, regulates the cell cycle and differentiation of neural precursor cells. J Neurosci 34:3067–3078

    Article  CAS  PubMed  Google Scholar 

  5. Lungu G, Stoica G, Ambrus A (2013) MicroRNA profiling and the role of microRNA-132 in neurodegeneration using a rat model. Neurosci Lett 553:153–158

    Article  CAS  PubMed  Google Scholar 

  6. Baltimore D, Boldin MP, O’Connell RM, Rao DS, Taganov KD (2008) MicroRNAs: new regulators of immune cell development and function. Nat Immunol 9:839–845

    Article  CAS  PubMed  Google Scholar 

  7. Giraldez AJ, Cinalli RM, Glasner ME, Enright AJ, Thomson JM, Baskerville S, Hammond SM, Bartel DP, Schier AF (2005) MicroRNAs regulate brain morphogenesis in zebrafish. Science 308:833–838

    Article  CAS  PubMed  Google Scholar 

  8. Abbott AL, Alvarez-Saavedra E, Miska EA, Lau NC, Bartel DP, Horvitz HR, Ambros V (2005) The let-7 MicroRNA family members mir-48, mir-84, and mir-241 function together to regulate developmental timing in Caenorhabditis elegans. Dev Cell 9:403–414

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Lukiw WJ (2007) MicroRNA speciation in fetal, adult and Alzheimer’s disease hippocampus. NeuroReport 18:297–300

    Article  CAS  PubMed  Google Scholar 

  10. Wang WX, Rajeev BW, Stromberg AJ, Ren N, Tang G, Huang Q, Rigoutsos I, Nelson PT (2008) The expression of microRNA miR-107 decreases early in Alzheimer’s disease and may accelerate diseaseprogression through regulation of beta-site amyloid precursor protein-cleaving enzyme 1. J Neurosci 28:1213–1223

    Article  PubMed Central  PubMed  Google Scholar 

  11. Beveridge NJ, Tooney PA, Carroll AP, Gardiner E, Bowden N, Scott RJ, Tran N, Dedova I, Cairns MJ (2008) Dysregulation of miRNA 181b in the temporal cortex in schizophrenia. Hum Mol Genet 17:1156–1168

    Article  CAS  PubMed  Google Scholar 

  12. Penagarikano O, Mulle JG, Warren ST (2007) The pathophysiology of fragile x syndrome. Annu Rev Genomics Hum Genet 8:109–129

    Article  CAS  PubMed  Google Scholar 

  13. Bassell GJ, Warren ST (2008) Fragile X syndrome: loss of local mRNA regulation alters synaptic development and function. Neuron 60:201–214

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Epstein AM, Bauer CR, Ho A, Bosco G, Zarnescu DC (2009) Drosophila fragile X protein controls cellular proliferation by regulating cbl levels in the ovary. Dev Biol 330:83–92

    Article  CAS  PubMed  Google Scholar 

  15. Luo Y, Shan G, Guo W, Smrt RD, Johnson EB, Li X, Pfeiffer RL, Szulwach KE, Duan R, Barkho BZ, Li W, Liu C, Jin P, Zhao X (2010) Fragile X mental retardation protein regulates proliferation and differentiation of adult neural stem/progenitor cells. PLoS Genet 6:e1000898

    Article  PubMed Central  PubMed  Google Scholar 

  16. Betel D, Wilson M, Gabow A, Marks DS, Sander C (2008) microRNA target predictions: the microRNA.org resource: targets and expression. Nucleic Acids Res 36:D149–D153

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Friedman RC, Farh KK, Burge CB, Bartel DP (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19:92–105

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Bult CJ, Eppig JT, Kadin JA, Richardson JE, Blake JA, Mouse Genome Database Group (2008) The mouse genome database (MGD): mouse biology and model systems. Nucleic Acids Res 36:D724–D728

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Ren YJ, Zhang H, Huang H, Wang XM, Zhou ZY, Cui FZ, An YH (2009) In vitro behavior of neural stem cells in response to different chemical functional groups. Biomaterials 30:1036–1044

    Article  CAS  PubMed  Google Scholar 

  20. Paddison PJ, Caudy AA, Bernstein E, Hannon GJ, Conklin DS (2002) Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells. Genes Dev 16:948–958

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Yi YH, Sun XS, Qin JM, Zhao QH, Liao WP, Long YS (2010) Experimental identification of microRNA targets on the 3′ untranslated region of human FMR1 gene. J Neurosci Methods 190:34–38

    Article  CAS  PubMed  Google Scholar 

  22. Zongaro S, Hukema R, D’Antoni S, Davidovic L, Barbry P, Catania MV, Willemsen R, Mari B, Bardoni B (2013) The 3′ UTR of FMR1 mRNA is a target of miR-101, miR-129-5p and miR-221: implications for the molecular pathology of FXTAS at the synapse. Hum Mol Genet 22:1971–1982

    Article  CAS  PubMed  Google Scholar 

  23. Gong X, Zhang K, Wang Y, Wang J, Cui Y, Li S, Luo Y (2013) MicroRNA-130b targets Fmr1 and regulated embryonic neural progenitor cell proliferation and differentiation. Biochem Biophys Res Commun 439:493–500

    Article  CAS  PubMed  Google Scholar 

  24. Lagos-Quintana M, Rauhut R, Yalcin A, Meyer J, Lendeckel W, Tuschl T (2002) Identification of tissue-specific microRNAs from mouse. Curr Biol 12:735–739

    Article  CAS  PubMed  Google Scholar 

  25. Epstein AM, Bauer CR, Ho A, Bosco G, Zarnescu DC (2009) Drosophila fragile X protein controls cellular proliferation by regulating cbl levels in the ovary. Dev Biol 330:83–92

    Article  CAS  PubMed  Google Scholar 

  26. Callan MA, Cabernard C, Heck J, Luois S, Doe CQ, Zarnescu DC (2010) Fragile X protein controls neural stem cell proliferation in the Drosophila brain. Hum Mol Genet 19:3068–3079

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Lu R, Wang H, Liang Z, Ku L, O’donnell WT, Li W, Warren ST, Feng Y (2004) The fragile X protein controls microtubule-associated protein 1B translation and microtubule stability in brain neuron development. Proc Natl Acad Sci USA 101:15201–15206

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Sung YJ, Dolzhanskaya N, Nolin SL, Brown T, Currie JR, Denman RB (2003) The fragile X mental retardation protein FMRP binds elongation factor 1A mRNA and negatively regulates its translation in vivo. J Biol Chem 278:15669–15678

    Article  CAS  PubMed  Google Scholar 

  29. Lange C, Huttner WB, Calegari F (2009) Cdk4/cyclinD1 overexpression in neural stem cells shortens G1, delays neurogenesis, and promotes the generation and expansion of basal progenitors. Cell Stem Cell 5:320–331

    Article  CAS  PubMed  Google Scholar 

  30. Artegiani B, Lindemann D, Calegari F (2011) Overexpression of cdk4 and cyclin D1 triggers greater expansion of neural stem cells in the adult mouse brain. J Exp Med 208:937–948

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  CAS  PubMed  Google Scholar 

  32. Visvanathan J, Lee S, Lee B, Lee JW, Lee SK (2007) The microRNA miR-124 antagonizes the anti-neural REST/SCP1 pathway during embryonic CNS development. Genes Dev 21:744–749

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Yoo AS, Staah BT, Chen L, Crabtree GR (2009) MicroRNA-mediated switching of chromatin-remodelling complexes in neural development. Nature 460:642–646

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work is partially supported by the National Natural Science Foundations of China (Nos. 30971473, 31171317, 31271375 and 31271450) and the Scientific Research Foundation to support returnees.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Siguang Li or Yuping Luo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 96 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, X., Wang, Y., Zeng, J. et al. Computational Identification and Experimental Validation of MicroRNAs Binding to the Fragile X Syndrome Gene Fmr1 . Neurochem Res 40, 109–117 (2015). https://doi.org/10.1007/s11064-014-1471-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-014-1471-3

Keywords

Navigation