Skip to main content
Log in

The Receptor Concept in 3D: From Hypothesis and Metaphor to GPCR–Ligand Structures

  • Overview
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The first mentioning of the word “receptor” for the structure with which a bioactive compound should react for obtaining its specific influence on a physiological system goes back to the years around 1900. The receptor concept was adapted from the lock and key theory for the enzyme substrate and blockers interactions. Through the years the concept, in the beginning rather being a metaphor, not a model, was refined and became reality in recent years. Not only the structures of receptors were elucidated, also the receptor machineries were unraveled. Following a brief historical review we will describe how the recent breakthroughs in the experimental determination of G protein-coupled receptor (GPCR) crystal structures can be complemented by computational modeling, medicinal chemistry, biochemical, and molecular pharmacological studies to obtain new insights into the molecular determinants of GPCR–ligand binding and activation. We will furthermore discuss how this information can be used for structure-based discovery of novel GPCR ligands that bind specific (allosteric) binding sites with desired effects on GPCR functional activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Böhme J (1621) The signature of all things [Signatura Rerum]. Translated by John Ellistone. London, 1651

  2. Brown AC, Fraser TR (1868) On the connection between chemical constitution and physiological action; with special reference to the physiological action of the salts of the ammonium bases derived from strychnia, brucia, thebaia, codeia, morphia, and nicotia. J Anat Physiol 2(2):224–242

    PubMed  CAS  PubMed Central  Google Scholar 

  3. Prull CR (2003) Part of a scientific master plan? Paul Ehrlich and the origins of his receptor concept. Med Hist 47(3):332–356

    PubMed  PubMed Central  Google Scholar 

  4. Fischer E (1894) Einfluss der Configuration auf die Wirkung der Enzyme. Ber Dtsch Chem Ges 27(3):2985–2993

    CAS  Google Scholar 

  5. Ariëns EJ (1964) Molecular pharmacology : the mode of action of biologically active compounds, vol 2. Academic Press, New York

    Google Scholar 

  6. Ariëns EJ (1964) Molecular pharmacology: the mode of action of biologically active compounds, vol 1. Academic Press, New York

    Google Scholar 

  7. Nauta WT, Harms AF (1968) Proceedings of the international pharmacol. meeting, 3rd edn, vol 7. Pergamon Press, Oxford, p 305

  8. Hansch C, Fujita T (1964) p-σ-π Analysis. A method for the correlation of biological activity and chemical structure. J Am Chem Soc 86(8):1616–1626

  9. Lefkowitz RJ (2004) Historical review: a brief history and personal retrospective of seven-transmembrane receptors. Trends Pharmacol Sci 25(8):413–422. doi:10.1016/j.tips.2004.06.006

    PubMed  CAS  Google Scholar 

  10. Kenakin T (2001) Inverse, protean, and ligand-selective agonism: matters of receptor conformation. FASEB J 15(3):598–611. doi:10.1096/fj.00-0438rev

    PubMed  CAS  Google Scholar 

  11. Henderson R, Baldwin JM, Ceska TA, Zemlin F, Beckmann E, Downing KH (1990) Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy. J Mol Biol 213(4):899–929. doi:10.1016/S0022-2836(05)80271-2

    PubMed  CAS  Google Scholar 

  12. Pebay-Peyroula E, Rummel G, Rosenbusch JP, Landau EM (1997) X-ray structure of bacteriorhodopsin at 2.5 angstroms from microcrystals grown in lipidic cubic phases. Science 277(5332):1676–1681

    PubMed  CAS  Google Scholar 

  13. Wieland K, Laak AM, Smit MJ, Kuhne R, Timmerman H, Leurs R (1999) Mutational analysis of the antagonist-binding site of the histamine H(1) receptor. J Biol Chem 274(42):29994–30000. doi:10.1074/jbc.274.42.29994

    PubMed  CAS  Google Scholar 

  14. ter Laak AM, Timmerman H, Leurs R, Nederkoorn PH, Smit MJ, Donne-Op den Kelder GM (1995) Modelling and mutation studies on the histamine H1-receptor agonist binding site reveal different binding modes for H1-agonists: Asp116 (TM3) has a constitutive role in receptor stimulation. J Comput Aided Mol Des 9(4):319–330

    PubMed  Google Scholar 

  15. Shimamura T, Shiroishi M, Weyand S, Tsujimoto H, Winter G, Katritch V, Abagyan R, Cherezov V, Liu W, Han GW, Kobayashi T, Stevens RC, Iwata S (2011) Structure of the human histamine H1 receptor complex with doxepin. Nature 475(7354):65–70. doi:10.1038/nature10236

    PubMed  CAS  PubMed Central  Google Scholar 

  16. Palczewski K, Kumasaka T, Hori T, Behnke CA, Motoshima H, Fox BA, Le Trong I, Teller DC, Okada T, Stenkamp RE, Yamamoto M, Miyano M (2000) Crystal structure of rhodopsin: AG protein-coupled receptor. Science 289(5480):739–745. doi:10.1126/science.289.5480.739

    PubMed  CAS  Google Scholar 

  17. Filipek S, Teller DC, Palczewski K, Stenkamp R (2003) The crystallographic model of rhodopsin and its use in studies of other G protein-coupled receptors. Annu Rev Biophys Biomol Struct 32:375–397. doi:10.1146/annurev.biophys.32.110601.142520

    PubMed  CAS  PubMed Central  Google Scholar 

  18. Jacobson KA, Costanzi S (2012) New insights for drug design from the X-ray crystallographic structures of G-protein-coupled receptors. Mol Pharmacol 82(3):361–371. doi:10.1124/mol.112.079335

    PubMed  CAS  PubMed Central  Google Scholar 

  19. Ring AM, Manglik A, Kruse AC, Enos MD, Weis WI, Garcia KC, Kobilka BK (2013) Adrenaline-activated structure of beta-adrenoceptor stabilized by an engineered nanobody. Nature. doi:10.1038/nature12572

    Google Scholar 

  20. Cherezov V, Rosenbaum DM, Hanson MA, Rasmussen SG, Thian FS, Kobilka TS, Choi HJ, Kuhn P, Weis WI, Kobilka BK, Stevens RC (2007) High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor. Science 318(5854):1258–1265. doi:10.1126/science.1150577

    PubMed  CAS  PubMed Central  Google Scholar 

  21. Wu B, Chien EY, Mol CD, Fenalti G, Liu W, Katritch V, Abagyan R, Brooun A, Wells P, Bi FC, Hamel DJ, Kuhn P, Handel TM, Cherezov V, Stevens RC (2010) Structures of the CXCR4 chemokine GPCR with small-molecule and cyclic peptide antagonists. Science 330(6007):1066–1071. doi:10.1126/science.1194396

    PubMed  CAS  PubMed Central  Google Scholar 

  22. Tan Q, Zhu Y, Li J, Chen Z, Han GW, Kufareva I, Li T, Ma L, Fenalti G, Li J, Zhang W, Xie X, Yang H, Jiang H, Cherezov V, Liu H, Stevens RC, Zhao Q, Wu B (2013) Structure of the CCR5 chemokine receptor-HIV entry inhibitor maraviroc complex. Science 341(6152):1387–1390. doi:10.1126/science.1241475

    PubMed  CAS  Google Scholar 

  23. Warne T, Edwards PC, Leslie AG, Tate CG (2012) Crystal structures of a stabilized beta1-adrenoceptor bound to the biased agonists bucindolol and carvedilol. Structure 20(5):841–849. doi:10.1016/j.str.2012.03.014

    PubMed  CAS  Google Scholar 

  24. Kruse AC, Ring AM, Manglik A, Hu J, Hu K, Eitel K, Hubner H, Pardon E, Valant C, Sexton PM, Christopoulos A, Felder CC, Gmeiner P, Steyaert J, Weis WI, Garcia KC, Wess J, Kobilka BK (2013) Activation and allosteric modulation of a muscarinic acetylcholine receptor. Nature 504(7478):101–106. doi:10.1038/nature12735

    PubMed  CAS  PubMed Central  Google Scholar 

  25. Wang C, Jiang Y, Ma J, Wu H, Wacker D, Katritch V, Han GW, Liu W, Huang XP, Vardy E, McCorvy JD, Gao X, Zhou XE, Melcher K, Zhang C, Bai F, Yang H, Yang L, Jiang H, Roth BL, Cherezov V, Stevens RC, Xu HE (2013) Structural basis for molecular recognition at serotonin receptors. Science 340(6132):610–614. doi:10.1126/science.1232807

    PubMed  CAS  PubMed Central  Google Scholar 

  26. Egloff P, Hillenbrand M, Klenk C, Batyuk A, Heine P, Balada S, Schlinkmann KM, Scott DJ, Schutz M, Pluckthun A (2014) Structure of signaling-competent neurotensin receptor 1 obtained by directed evolution in Escherichia coli. Proc Natl Acad Sci USA 111(6):E655–E662. doi:10.1073/pnas.1317903111

    PubMed  CAS  PubMed Central  Google Scholar 

  27. Weierstall U, James D, Wang C, White TA, Wang D, Liu W, Spence JC, Bruce Doak R, Nelson G, Fromme P, Fromme R, Grotjohann I, Kupitz C, Zatsepin NA, Liu H, Basu S, Wacker D, Han GW, Katritch V, Boutet S, Messerschmidt M, Williams GJ, Koglin JE, Marvin Seibert M, Klinker M, Gati C, Shoeman RL, Barty A, Chapman HN, Kirian RA, Beyerlein KR, Stevens RC, Li D, Shah ST, Howe N, Caffrey M, Cherezov V (2014) Lipidic cubic phase injector facilitates membrane protein serial femtosecond crystallography. Nat Commun 5:3309. doi:10.1038/ncomms4309

    PubMed  PubMed Central  Google Scholar 

  28. Siu FY, He M, de Graaf C, Han GW, Yang D, Zhang Z, Zhou C, Xu Q, Wacker D, Joseph JS, Liu W, Lau J, Cherezov V, Katritch V, Wang MW, Stevens RC (2013) Structure of the human glucagon class B G-protein-coupled receptor. Nature 499(7459):444–449. doi:10.1038/nature12393

    PubMed  CAS  Google Scholar 

  29. Hollenstein K, Kean J, Bortolato A, Cheng RK, Dore AS, Jazayeri A, Cooke RM, Weir M, Marshall FH (2013) Structure of class B GPCR corticotropin-releasing factor receptor 1. Nature 499(7459):438–443. doi:10.1038/nature12357

    PubMed  CAS  Google Scholar 

  30. Hollenstein K, de Graaf C, Bortolato A, Wang MW, Marshall FH, Stevens RC (2014) Insights into the structure of class B GPCRs. Trends Pharmacol Sci 35(1):12–22. doi:10.1016/j.tips.2013.11.001

    PubMed  CAS  Google Scholar 

  31. Wu H, Wang C, Gregory KJ, Han GW, Cho HP, Xia Y, Niswender CM, Katritch V, Meiler J, Cherezov V, Conn PJ, Stevens RC (2014) Structure of a class C GPCR metabotropic glutamate receptor 1 bound to an allosteric modulator. Science 344(6179):58–64. doi:10.1126/science.1249489

    PubMed  CAS  Google Scholar 

  32. Dore AS, Okrasa K, Patel JC, Serrano-Vega M, Bennett K, Cooke RM, Errey JC, Jazayeri A, Khan S, Tehan B, Weir M, Wiggin GR, Marshall FH (2014) Structure of class C GPCR metabotropic glutamate receptor 5 transmembrane domain. Nature. doi:10.1038/nature13396

    PubMed  Google Scholar 

  33. Zhang K, Zhang J, Gao ZG, Zhang D, Zhu L, Han GW, Moss SM, Paoletta S, Kiselev E, Lu W, Fenalti G, Zhang W, Muller CE, Yang H, Jiang H, Cherezov V, Katritch V, Jacobson KA, Stevens RC, Wu B, Zhao Q (2014) Structure of the human P2Y receptor in complex with an antithrombotic drug. Nature 509(7498):115–118. doi:10.1038/nature13083

    PubMed  CAS  Google Scholar 

  34. Liu W, Chun E, Thompson AA, Chubukov P, Xu F, Katritch V, Han GW, Roth CB, Heitman LH, IJzerman AP, Cherezov V, Stevens RC (2012) Structural basis for allosteric regulation of GPCRs by sodium ions. Science 337(6091):232–236. doi:10.1126/science.1219218

    PubMed  CAS  PubMed Central  Google Scholar 

  35. Miller-Gallacher JL, Nehme R, Warne T, Edwards PC, Schertler GF, Leslie AG, Tate CG (2014) The 2.1 Å resolution structure of cyanopindolol-bound beta1-adrenoceptor identifies an intramembrane Na+ ion that stabilises the ligand-free receptor. PLoS One 9(3):e92727. doi:10.1371/journal.pone.0092727

    PubMed  PubMed Central  Google Scholar 

  36. Fenalti G, Giguere PM, Katritch V, Huang XP, Thompson AA, Cherezov V, Roth BL, Stevens RC (2014) Molecular control of delta-opioid receptor signalling. Nature 506(7487):191–196. doi:10.1038/nature12944

    PubMed  CAS  Google Scholar 

  37. Zhang C, Srinivasan Y, Arlow DH, Fung JJ, Palmer D, Zheng Y, Green HF, Pandey A, Dror RO, Shaw DE, Weis WI, Coughlin SR, Kobilka BK (2012) High-resolution crystal structure of human protease-activated receptor 1. Nature 492(7429):387–392. doi:10.1038/nature11701

    PubMed  CAS  PubMed Central  Google Scholar 

  38. Gutierrez-de-Teran H, Massink A, Rodriguez D, Liu W, Han GW, Joseph JS, Katritch I, Heitman LH, Xia L, Ijzerman AP, Cherezov V, Katritch V, Stevens RC (2013) The role of a sodium ion binding site in the allosteric modulation of the A(2A) adenosine G protein-coupled receptor. Structure 21(12):2175–2185. doi:10.1016/j.str.2013.09.020

    PubMed  CAS  Google Scholar 

  39. Kooistra AJ, Kuhne S, de Esch IJP, Leurs R, de Graaf C (2013) A structural chemogenomics analysis of aminergic GPCRs: lessons for histamine receptor ligand design. Br J Pharmacol. doi:10.1111/bph.12248

    PubMed  PubMed Central  Google Scholar 

  40. Schultes S, Nijmeijer S, Engelhardt H, Kooistra AJ, Vischer HF, de Esch IJP, Haaksma EJ, Leurs R, de Graaf C (2013) Mapping histamine H4 receptor-ligand binding modes. MedChemComm 4(1):193–204

    CAS  Google Scholar 

  41. Istyastono EP, Nijmeijer S, Lim HD, van de Stolpe A, Roumen L, Kooistra AJ, Vischer HF, de Esch IJ, Leurs R, de Graaf C (2011) Molecular determinants of ligand binding modes in the histamine H(4) receptor: linking ligand-based three-dimensional quantitative structure-activity relationship (3D-QSAR) models to in silico guided receptor mutagenesis studies. J Med Chem 54(23):8136–8147. doi:10.1021/jm201042n

    PubMed  CAS  Google Scholar 

  42. de Graaf C, Vischer HF, de Kloe GE, Kooistra AJ, Nijmeijer S, Kuijer M, Verheij MH, England PJ, van Muijlwijk-Koezen JE, Leurs R, de Esch IJ (2013) Small and colorful stones make beautiful mosaics: fragment-based chemogenomics. Drug Discov Today 18(7–8):323–330. doi:10.1016/j.drudis.2012.12.003

    PubMed  Google Scholar 

  43. Besnard J, Ruda GF, Setola V, Abecassis K, Rodriguiz RM, Huang XP, Norval S, Sassano MF, Shin AI, Webster LA, Simeons FR, Stojanovski L, Prat A, Seidah NG, Constam DB, Bickerton GR, Read KD, Wetsel WC, Gilbert IH, Roth BL, Hopkins AL (2012) Automated design of ligands to polypharmacological profiles. Nature 492(7428):215–220. doi:10.1038/nature11691

    PubMed  CAS  Google Scholar 

  44. Kooistra AJ, Leurs R, de Esch IJ, de Graaf C (2014) From three-dimensional GPCR structure to rational ligand discovery. Adv Exp Med Biol 796:129–157. doi:10.1007/978-94-007-7423-0_7

    PubMed  Google Scholar 

  45. de Graaf C, Kooistra AJ, Vischer HF, Katritch V, Kuijer M, Shiroishi M, Iwata S, Shimamura T, Stevens RC, de Esch IJ, Leurs R (2011) Crystal structure-based virtual screening for fragment-like ligands of the human histamine H(1) receptor. J Med Chem 54(23):8195–8206. doi:10.1021/jm2011589

    PubMed  PubMed Central  Google Scholar 

  46. Korb O, Stutzle T, Exner TE (2009) Empirical scoring functions for advanced protein–ligand docking with PLANTS. J Chem Inf Model 49(1):84–96. doi:10.1021/ci800298z

    PubMed  CAS  Google Scholar 

  47. Marcou G, Rognan D (2007) Optimizing fragment and scaffold docking by use of molecular interaction fingerprints. J Chem Inf Model 47(1):195–207. doi:10.1021/ci600342e

    PubMed  CAS  Google Scholar 

  48. Kolb P, Rosenbaum DM, Irwin JJ, Fung JJ, Kobilka BK, Shoichet BK (2009) Structure-based discovery of beta2-adrenergic receptor ligands. Proc Natl Acad Sci USA 106(16):6843–6848. doi:10.1073/pnas.0812657106

    PubMed  CAS  PubMed Central  Google Scholar 

  49. Weiss DR, Ahn S, Sassano MF, Kleist A, Zhu X, Strachan R, Roth BL, Lefkowitz RJ, Shoichet BK (2013) Conformation guides molecular efficacy in docking screens of activated beta-2 adrenergic G protein coupled receptor. ACS Chem Biol 8(5):1018–1026. doi:10.1021/cb400103f

    PubMed  CAS  PubMed Central  Google Scholar 

  50. Mysinger MM, Weiss DR, Ziarek JJ, Gravel S, Doak AK, Karpiak J, Heveker N, Shoichet BK, Volkman BF (2012) Structure-based ligand discovery for the protein–protein interface of chemokine receptor CXCR4. Proc Natl Acad Sci USA 109(14):5517–5522. doi:10.1073/pnas.1120431109

    PubMed  CAS  PubMed Central  Google Scholar 

  51. Carlsson J, Coleman RG, Setola V, Irwin JJ, Fan H, Schlessinger A, Sali A, Roth BL, Shoichet BK (2011) Ligand discovery from a dopamine D3 receptor homology model and crystal structure. Nat Chem Biol 7(11):769–778. doi:10.1038/nchembio.662

    PubMed  CAS  PubMed Central  Google Scholar 

  52. Katritch V, Jaakola VP, Lane JR, Lin J, Ijzerman AP, Yeager M, Kufareva I, Stevens RC, Abagyan R (2010) Structure-based discovery of novel chemotypes for adenosine A(2A) receptor antagonists. J Med Chem 53(4):1799–1809. doi:10.1021/jm901647p

    PubMed  CAS  PubMed Central  Google Scholar 

  53. Carlsson J, Yoo L, Gao ZG, Irwin JJ, Shoichet BK, Jacobson KA (2010) Structure-based discovery of A2A adenosine receptor ligands. J Med Chem 53(9):3748–3755. doi:10.1021/jm100240h

    PubMed  CAS  PubMed Central  Google Scholar 

  54. Sirci F, Istyastono EP, Vischer HF, Kooistra AJ, Nijmeijer S, Kuijer M, Wijtmans M, Mannhold R, Leurs R, de Esch IJ, de Graaf C (2012) Virtual fragment screening: discovery of histamine h(3) receptor ligands using ligand-based and protein-based molecular fingerprints. J Chem Inf Model 52(12):3308–3324. doi:10.1021/ci3004094

    PubMed  CAS  Google Scholar 

  55. Tehan BG, Bortolato A, Blaney FE, Weir MP, Mason JS (2014) Unifying family A GPCR theories of activation. Pharmacol Ther 143(1):51–60. doi:10.1016/j.pharmthera.2014.02.004

    PubMed  CAS  Google Scholar 

  56. Nygaard R, Zou Y, Dror RO, Mildorf TJ, Arlow DH, Manglik A, Pan AC, Liu CW, Fung JJ, Bokoch MP, Thian FS, Kobilka TS, Shaw DE, Mueller L, Prosser RS, Kobilka BK (2013) The dynamic process of beta(2)-adrenergic receptor activation. Cell 152(3):532–542. doi:10.1016/j.cell.2013.01.008

    PubMed  CAS  PubMed Central  Google Scholar 

  57. Swaminath G, Xiang Y, Lee TW, Steenhuis J, Parnot C, Kobilka BK (2004) Sequential binding of agonists to the beta2 adrenoceptor. Kinetic evidence for intermediate conformational states. J Biol Chem 279(1):686–691. doi:10.1074/jbc.M310888200

    PubMed  CAS  Google Scholar 

  58. Rasmussen SG, DeVree BT, Zou Y, Kruse AC, Chung KY, Kobilka TS, Thian FS, Chae PS, Pardon E, Calinski D, Mathiesen JM, Shah ST, Lyons JA, Caffrey M, Gellman SH, Steyaert J, Skiniotis G, Weis WI, Sunahara RK, Kobilka BK (2011) Crystal structure of the beta2 adrenergic receptor-Gs protein complex. Nature 477(7366):549–555. doi:10.1038/nature10361

    PubMed  CAS  PubMed Central  Google Scholar 

  59. Kim YJ, Hofmann KP, Ernst OP, Scheerer P, Choe HW, Sommer ME (2013) Crystal structure of pre-activated arrestin p44. Nature 497(7447):142–146. doi:10.1038/nature12133

    PubMed  CAS  Google Scholar 

  60. Shukla AK, Manglik A, Kruse AC, Xiao K, Reis RI, Tseng WC, Staus DP, Hilger D, Uysal S, Huang LY, Paduch M, Tripathi-Shukla P, Koide A, Koide S, Weis WI, Kossiakoff AA, Kobilka BK, Lefkowitz RJ (2013) Structure of active beta-arrestin-1 bound to a G-protein-coupled receptor phosphopeptide. Nature 497(7447):137–141. doi:10.1038/nature12120

    PubMed  CAS  PubMed Central  Google Scholar 

  61. Shukla AK, Westfield GH, Xiao K, Reis RI, Huang L-Y, Tripathi-Shukla P, Qian J, Li S, Blanc A, Oleskie AN, Dosey AM, Su M, Liang C-R, Gu L-L, Shan J-M, Chen X, Hanna R, Choi M, Yao XJ, Klink BU, Kahsai AW, Sidhu SS, Koide S, Penczek PA, Kossiakoff AA, Woods VL Jr, Kobilka BK, Skiniotis G, Lefkowitz RJ (2014) Visualization of arrestin recruitment by a G-protein-coupled receptor. Nature. doi:10.1038/nature13430

    PubMed  Google Scholar 

  62. Ostermaier MK, Peterhans C, Jaussi R, Deupi X, Standfuss J (2014) Functional map of arrestin-1 at single amino acid resolution. Proc Natl Acad Sci USA 111(5):1825–1830. doi:10.1073/pnas.1319402111

    PubMed  CAS  PubMed Central  Google Scholar 

  63. Homan KT, Tesmer JJ (2014) Structural insights into G protein-coupled receptor kinase function. Curr Opin Cell Biol 27:25–31. doi:10.1016/j.ceb.2013.10.009

    PubMed  CAS  Google Scholar 

  64. de Graaf C, Rognan D (2008) Selective structure-based virtual screening for full and partial agonists of the beta2 adrenergic receptor. J Med Chem 51(16):4978–4985. doi:10.1021/jm800710x

    PubMed  Google Scholar 

  65. Granier S, Kobilka B (2012) A new era of GPCR structural and chemical biology. Nat Chem Biol 8(8):670–673. doi:10.1038/nchembio.1025

    PubMed  CAS  PubMed Central  Google Scholar 

  66. Rasmussen SG, Choi HJ, Fung JJ, Pardon E, Casarosa P, Chae PS, Devree BT, Rosenbaum DM, Thian FS, Kobilka TS, Schnapp A, Konetzki I, Sunahara RK, Gellman SH, Pautsch A, Steyaert J, Weis WI, Kobilka BK (2011) Structure of a nanobody-stabilized active state of the beta(2) adrenoceptor. Nature 469(7329):175–180. doi:10.1038/nature09648

    PubMed  CAS  PubMed Central  Google Scholar 

  67. Park JH, Scheerer P, Hofmann KP, Choe HW, Ernst OP (2008) Crystal structure of the ligand-free G-protein-coupled receptor opsin. Nature 454(7201):183–187. doi:10.1038/nature07063

    PubMed  CAS  Google Scholar 

  68. Lebon G, Warne T, Edwards PC, Bennett K, Langmead CJ, Leslie AG, Tate CG (2011) Agonist-bound adenosine A2A receptor structures reveal common features of GPCR activation. Nature 474(7352):521–525. doi:10.1038/nature10136

    PubMed  CAS  PubMed Central  Google Scholar 

  69. Zhang J, Zhang K, Gao ZG, Paoletta S, Zhang D, Han GW, Li T, Ma L, Zhang W, Muller CE, Yang H, Jiang H, Cherezov V, Katritch V, Jacobson KA, Stevens RC, Wu B, Zhao Q (2014) Agonist-bound structure of the human P2Y12 receptor. Nature 509(7498):119–122. doi:10.1038/nature13288

    PubMed  CAS  Google Scholar 

  70. Katritch V, Abagyan R (2011) GPCR agonist binding revealed by modeling and crystallography. Trends Pharmacol Sci 32(11):637–643. doi:10.1016/j.tips.2011.08.001

    PubMed  CAS  PubMed Central  Google Scholar 

  71. Warne T, Tate CG (2013) The importance of interactions with helix 5 in determining the efficacy of beta-adrenoceptor ligands. Biochem Soc Trans 41(1):159–165. doi:10.1042/BST20120228

    PubMed  CAS  Google Scholar 

  72. Lebon G, Warne T, Tate CG (2012) Agonist-bound structures of G protein-coupled receptors. Curr Opin Struct Biol 22(4):482–490. doi:10.1016/j.sbi.2012.03.007

    PubMed  CAS  Google Scholar 

  73. Liu JJ, Horst R, Katritch V, Stevens RC, Wuthrich K (2012) Biased signaling pathways in beta2-adrenergic receptor characterized by 19F-NMR. Science 335(6072):1106–1110. doi:10.1126/science.1215802

    PubMed  CAS  PubMed Central  Google Scholar 

  74. Bokoch MP, Zou Y, Rasmussen SG, Liu CW, Nygaard R, Rosenbaum DM, Fung JJ, Choi HJ, Thian FS, Kobilka TS, Puglisi JD, Weis WI, Pardo L, Prosser RS, Mueller L, Kobilka BK (2010) Ligand-specific regulation of the extracellular surface of a G-protein-coupled receptor. Nature 463(7277):108–112. doi:10.1038/nature08650

    PubMed  CAS  PubMed Central  Google Scholar 

  75. Venkatakrishnan AJ, Deupi X, Lebon G, Tate CG, Schertler GF, Babu MM (2013) Molecular signatures of G-protein-coupled receptors. Nature 494(7436):185–194. doi:10.1038/nature11896

    PubMed  CAS  Google Scholar 

  76. Jongejan A, Bruysters M, Ballesteros JA, Haaksma E, Bakker RA, Pardo L, Leurs R (2005) Linking agonist binding to histamine H1 receptor activation. Nat Chem Biol 1(2):98–103. doi:10.1038/nchembio714

    PubMed  CAS  Google Scholar 

  77. Sansuk K, Deupi X, Torrecillas IR, Jongejan A, Nijmeijer S, Bakker RA, Pardo L, Leurs R (2011) A structural insight into the reorientation of transmembrane domains 3 and 5 during family A G protein-coupled receptor activation. Mol Pharmacol 79(2):262–269. doi:10.1124/mol.110.066068

    PubMed  CAS  Google Scholar 

  78. Nijmeijer S, Vischer HF, Sirci F, Schultes S, Engelhardt H, de Graaf C, Rosethorne EM, Charlton SJ, Leurs R (2013) Detailed analysis of biased histamine H(4) receptor signalling by JNJ 7777120 analogues. Br J Pharmacol 170(1):78–88. doi:10.1111/bph.12117

    PubMed  CAS  PubMed Central  Google Scholar 

  79. Valant C, May LT, Aurelio L, Chuo CH, White PJ, Baltos JA, Sexton PM, Scammells PJ, Christopoulos A (2014) Separation of on-target efficacy from adverse effects through rational design of a bitopic adenosine receptor agonist. Proc Natl Acad Sci USA 111(12):4614–4619. doi:10.1073/pnas.1320962111

    PubMed  CAS  Google Scholar 

  80. Keov P, Sexton PM, Christopoulos A (2011) Allosteric modulation of G protein-coupled receptors: a pharmacological perspective. Neuropharmacology 60(1):24–35. doi:10.1016/j.neuropharm.2010.07.010

    PubMed  CAS  Google Scholar 

  81. Katritch V, Cherezov V, Stevens RC (2013) Structure-function of the G protein-coupled receptor superfamily. Annu Rev Pharmacol Toxicol 53:531–556. doi:10.1146/annurev-pharmtox-032112-135923

    PubMed  CAS  PubMed Central  Google Scholar 

  82. Kooistra AJ, Roumen L, Leurs R, de Esch IJP, de Graaf C (2013) From heptahelical bundle to hits from the Haystack: structure-based virtual screening for GPCR ligands. Methods Enzymol 522:279–336. doi:10.1016/B978-0-12-407865-9.00015-7

    PubMed  CAS  Google Scholar 

  83. Congreve M, Dias JM, Marshall FH (2014) Structure-based drug design for g protein-coupled receptors. Prog Med Chem 53:1–63. doi:10.1016/B978-0-444-63380-4.00001-9

    PubMed  CAS  Google Scholar 

  84. Gonzalez A, Cordomi A, Matsoukas M, Zachmann J, Pardo L (2014) Modeling of G protein-coupled receptors using crystal structures: from monomers to signaling complexes. Adv Exp Med Biol 796:15–33. doi:10.1007/978-94-007-7423-0_2

    PubMed  Google Scholar 

  85. Johnston JM, Wang H, Provasi D, Filizola M (2012) Assessing the relative stability of dimer interfaces in g protein-coupled receptors. PLoS Comput Biol 8(8):e1002649. doi:10.1371/journal.pcbi.1002649

    PubMed  CAS  PubMed Central  Google Scholar 

  86. Taylor CM, Barda Y, Kisselev OG, Marshall GR (2008) Modulating G-protein coupled receptor/G-protein signal transduction by small molecules suggested by virtual screening. J Med Chem 51(17):5297–5303. doi:10.1021/jm800326q

    PubMed  CAS  PubMed Central  Google Scholar 

  87. Lane JR, Chubukov P, Liu W, Canals M, Cherezov V, Abagyan R, Stevens RC, Katritch V (2013) Structure-based ligand discovery targeting orthosteric and allosteric pockets of dopamine receptors. Mol Pharmacol 84(6):794–807. doi:10.1124/mol.113.088054

    PubMed  CAS  Google Scholar 

  88. Dror RO, Green HF, Valant C, Borhani DW, Valcourt JR, Pan AC, Arlow DH, Canals M, Lane JR, Rahmani R, Baell JB, Sexton PM, Christopoulos A, Shaw DE (2013) Structural basis for modulation of a G-protein-coupled receptor by allosteric drugs. Nature 503(7475):295–299. doi:10.1038/nature12595

    PubMed  CAS  Google Scholar 

  89. Mohr K, Schmitz J, Schrage R, Trankle C, Holzgrabe U (2013) Molecular alliance-from orthosteric and allosteric ligands to dualsteric/bitopic agonists at G protein coupled receptors. Angew Chem 52(2):508–516. doi:10.1002/anie.201205315

    CAS  Google Scholar 

  90. Valant C, Robert Lane J, Sexton PM, Christopoulos A (2012) The best of both worlds? Bitopic orthosteric/allosteric ligands of G protein-coupled receptors. Annu Rev Pharmacol Toxicol 52:153–178. doi:10.1146/annurev-pharmtox-010611-134514

    PubMed  CAS  Google Scholar 

  91. de Kloe GE, Bailey D, Leurs R, de Esch IJ (2009) Transforming fragments into candidates: small becomes big in medicinal chemistry. Drug Discov Today 14(13–14):630–646. doi:10.1016/j.drudis.2009.03.009

    PubMed  Google Scholar 

  92. Langmead CJ, Andrews SP, Congreve M, Errey JC, Hurrell E, Marshall FH, Mason JS, Richardson CM, Robertson N, Zhukov A, Weir M (2012) Identification of novel adenosine A2A receptor antagonists by virtual screening. J Med Chem. 55(5):1904–1909. doi:10.1021/jm201455y

    PubMed  CAS  PubMed Central  Google Scholar 

  93. Congreve M, Andrews SP, Dore AS, Hollenstein K, Hurrell E, Langmead CJ, Mason JS, Ng IW, Tehan B, Zhukov A, Weir M, Marshall FH (2012) Discovery of 1,2,4-triazine derivatives as adenosine A(2A) antagonists using structure based drug design. J Med Chem 55(5):1898–1903. doi:10.1021/jm201376w

    PubMed  CAS  PubMed Central  Google Scholar 

  94. Chen D, Ranganathan A, IJzerman AP, Siegal G, Carlsson J (2013) Complementarity between in silico and biophysical screening approaches in fragment-based lead discovery against the A(2A) adenosine receptor. J Chem Inf Model 53(10):2701–2714. doi:10.1021/ci4003156

    PubMed  CAS  Google Scholar 

  95. Dror RO, Pan AC, Arlow DH, Borhani DW, Maragakis P, Shan Y, Xu H, Shaw DE (2011) Pathway and mechanism of drug binding to G-protein-coupled receptors. Proc Natl Acad Sci USA 108(32):13118–13123. doi:10.1073/pnas.1104614108

    PubMed  CAS  PubMed Central  Google Scholar 

  96. Tautermann CS, Kiechle T, Seeliger D, Diehl S, Wex E, Banholzer R, Gantner F, Pieper MP, Casarosa P (2013) Molecular basis for the long duration of action and kinetic selectivity of tiotropium for the muscarinic M3 receptor. J Med Chem 56(21):8746–8756. doi:10.1021/jm401219y

    PubMed  CAS  Google Scholar 

  97. Bai Q, Shi D, Zhang Y, Liu H, Yao X (2014) Exploration of the antagonist CP-376395 escape pathway for the corticotropin-releasing factor receptor 1 by random acceleration molecular dynamics simulations. Mol BioSyst. 10(7):1958–1967. doi:10.1039/c4mb00037d

    PubMed  CAS  Google Scholar 

  98. Swinney DC, Beavis P, Chuang KT, Zheng Y, Lee I, Gee P, Deval J, Rotstein DM, Dioszegi M, Ravendran P, Zhang J, Sankuratri S, Kondru R, Vauquelin G (2014) A study into the molecular mechanism of binding kinetics and long residence times of human CCR5 receptor small molecule allosteric ligands. Br J Pharmacol. doi:10.1111/bph.12683

    PubMed  Google Scholar 

  99. Aristotelous T, Ahn S, Shukla AK, Gawron S, Sassano MF, Kahsai AW, Wingler LM, Zhu X, Tripathi-Shukla P, Huang XP, Riley J, Besnard J, Read KD, Roth BL, Gilbert IH, Hopkins AL, Lefkowitz RJ, Navratilova I (2013) Discovery of beta2 adrenergic receptor ligands using biosensor fragment screening of tagged wild-type receptor. ACS Med Chem Lett 4(10):1005–1010. doi:10.1021/ml400312j

    PubMed  CAS  PubMed Central  Google Scholar 

  100. Andaloussi M, Lim HD, van der Meer T, Sijm M, Poulie CB, de Esch IJ, Leurs R, Smits RA (2013) A novel series of histamine H4 receptor antagonists based on the pyrido[3,2-d]pyrimidine scaffold: comparison of hERG binding and target residence time with PF-3893787. Bioorg Med Chem Lett 23(9):2663–2670. doi:10.1016/j.bmcl.2013.02.091

    PubMed  CAS  Google Scholar 

  101. Mason JS, Bortolato A, Weiss DR, Deflorian F, Tehan B, Marshall FH (2013) High end GPCR design: crafted ligand design and druggability analysis using protein structure, lipophilic hotspots and explicit water networks. Silico Pharmacol 1(1):23

    Google Scholar 

  102. Andrews SP, Mason JS, Hurrell E, Congreve M (2014) Structure-based drug design of chromone antagonists of the adenosine A 2A receptor. MedChemComm 5(5):571–575. doi:10.1039/C3MD00338H

  103. Bortolato A, Tehan BG, Bodnarchuk MS, Essex JW, Mason JS (2013) Water network perturbation in ligand binding: adenosine A(2A) antagonists as a case study. J Chem Inf Model 53(7):1700–1713. doi:10.1021/ci4001458

    PubMed  CAS  Google Scholar 

  104. Ballesteros JA, Weinstein H (1995) Integrated methods for the construction of three-dimensional models and computational probing of structure-function relations of G protein-coupled receptors. Methods Neurosci 25:366–428

    CAS  Google Scholar 

  105. Wang C, Wu H, Katritch V, Han GW, Huang XP, Liu W, Siu FY, Roth BL, Cherezov V, Stevens RC (2013) Structure of the human smoothened receptor bound to an antitumour agent. Nature 497(7449):338–343. doi:10.1038/nature12167

    PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

With this contribution to this special issue, the Division Medicinal Chemistry of the VU University Amsterdam honors Professor Povl Krogsgaard Larsen. The authors would like to thank all members of the Medicinal Chemistry group of the VU University Amsterdam who have contributed to the histamine receptor research described in this article. A.J.K. and C.d.G. participate in the European Cooperation in Science and Technology Action CM1207 [GPCR–Ligand Interactions, Structures, and Transmembrane Signalling: A European Research Network (GLISTEN)].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris de Graaf.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kooistra, A.J., de Graaf, C. & Timmerman, H. The Receptor Concept in 3D: From Hypothesis and Metaphor to GPCR–Ligand Structures. Neurochem Res 39, 1850–1861 (2014). https://doi.org/10.1007/s11064-014-1398-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-014-1398-8

Keywords

Navigation