Skip to main content
Log in

Is There a Correlation Between In Vitro Antioxidant Potential and In Vivo Effect of Carvacryl Acetate Against Oxidative Stress in Mice Hippocampus?

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

This study investigated in vitro and in vivo antioxidant potential of carvacryl acetate (CA), a derivative of carvacrol, monoterpenic component of oregano. The correlation between in vitro and in vivo CA effects was also determined. In vitro tests measured thiobarbituric acid reactive species content, nitrite formation and hydroxyl radical levels. In vivo tests measured thiobarbituric acid reactive species content, nitrite concentration and reduced glutathione (GSH) levels, as well as glutathione peroxidase (GPx), superoxide dismutase (SOD) and catalase activities were measured, using mice hippocampus. The CA administrations for in vivo tests were intraperitoneally and acutely improved. CA reduced lipid peroxidation, nitrite and hydroxyl radical contents in vitro as well as lipid peroxidation and nitrite content in vivo. It also increased reduced GSH levels and GPx as well as catalase activities. Moreover, CA required a lower concentration to inhibit 50 % of free radicals measured in vitro than trolox. There was significant negative correlation between in vitro nitrite levels and in vivo reduced GSH levels; in vitro nitrite content and in vivo GPx activity as well as in vitro hydroxyl radical levels and in vivo SOD activity. To date, this is the first study which suggests vitro and in vivo antioxidant potential to this monoterpene and the correlation between these parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bouayed J, Rammal H, Soulimani R (2009) Oxidative stress and anxiety. Oxid Med Cell Longev 2:63–67

    Article  PubMed Central  PubMed  Google Scholar 

  2. Santos IMS, Tomé AR, Saldanha GB, Ferreira PMP, Militão GCG, Freitas RM (2009) Oxidative stress in the hippocampus during experimental seizures can be ameliorated with the antioxidant ascorbic acid. Oxid Med Cell Longev 2:214–221

    Article  PubMed Central  PubMed  Google Scholar 

  3. Nobre Júnior HV, Fonteles MMF, Freitas RM (2009) Acute seizure activity promotes lipid peroxidation, increased nitrite levels and adaptive pathways against oxidative stress in the frontal cortex and striatum. Oxid Med Cell Longev 2:130–137

    Article  Google Scholar 

  4. Freitas RLM, Santos IMS, Souza GF, Saldanha GB, Tomé AR, Freitas RM (2010) Oxidative stress in rat hippocampus caused by pilocarpine-induced seizures is reversed by buspirone. Brain Res Bull 81:505–509

    Article  PubMed  CAS  Google Scholar 

  5. Campêlo LM, Gonçalves FC, Feitosa CM, Freitas RM (2011) Antioxidant activity of Citrus limon essential oil in mouse hippocampus. Pharm Biol 49:709–715

    Article  PubMed  Google Scholar 

  6. Marques THC, Melo CHS, Freitas RM (2012) In vitro evaluation of antioxidant, anxiolytic and antidepressant-like effect of the Bellis perennis extract. Rev Bras Farmacogn 22:1044–1052

    Article  CAS  Google Scholar 

  7. Silva OA, Almeida AAC, Carvalho RBF, Nogueira Neto JD, Sousa DP, Freitas RM (2012) Potencial antioxidante in vitro do (-)-α-terpineol. Biofar Rev Biol Farm 8:140–152

    Google Scholar 

  8. Mothana RAA, Hasson SS, Schultze W, Mowitz A, Lindequist U (2012) Phytochemical composition and in vitro antimicrobial and antioxidant activities of essential oils of three endemic Soqotraen Boswellia species. Food Chem 126:1149–1154

    Article  CAS  Google Scholar 

  9. Wannes WA, Mhamdi B, Sriti J, Jemia MB, Ouchikh O, Hamdaoui G, Kchouk ME, Marzouk B (2010) Antioxidant activities of the essential oils and methanol extracts from myrtle (Myrtus communis var. italica L.) leaf, stem and flower. Food Chem Toxicol 48:1362–1370

    Article  CAS  Google Scholar 

  10. Ruberto G, Baratta MT (2000) Antioxidant activity of selected essential oil components in two lipid model systems. Food Chem 69:167–174

    Article  CAS  Google Scholar 

  11. Nogueira Neto JD, Sousa DP, Freitas RM (2013) Avaliação do potencial antioxidante in vitro do nerolidol. Rev Ciênc Farm Básica Apl 34:125–130

    CAS  Google Scholar 

  12. Costa DM, Oliveira GAL, Sousa DP, Freitas RM (2012) Avaliação do potencial antioxidante in vitro do composto ciano-carvona. J Basic Appl Pharm Sci 33:567–575

    CAS  Google Scholar 

  13. Costa DA, Oliveira GAL, Lima TC, Santos PS, Sousa DP, Freitas RM (2012) Anticonvulsant and antioxidant effects of cyano-carvone and its action on acetylcholinesterase activity in mice hippocampus. Cell Mol Neurobiol 32:633–640

    Article  PubMed  CAS  Google Scholar 

  14. Baser KH (2008) Biological and pharmacological activities of carvacrol and carvacrol bearing essential oils. Curr Pharm Des 14:3106–3119

    Article  PubMed  CAS  Google Scholar 

  15. Silva MIG, Silva MAG, Neto MRA, Moura BA, Sousa HL, Lavor EPH, Vasconcelos PF, Macêdo DS, Sousa DP, Vasconcelos SMM, Sousa FCF (2009) Effects of isopulegol on pentylenetrazol-induced convulsions in mice: possible involvement of GABAergic system and antioxidant activity. Fitoterapia 80:506–513

    Article  PubMed  CAS  Google Scholar 

  16. Silva AO, Oliveira FRAM, Lima TC, Sousa DP, Souza AA, Freitas RM (2012) Evaluation of the antioxidant effects in vitro of the isopulegone. Free Rad Antiox 2:50–55

    Article  CAS  Google Scholar 

  17. Conforti F, Statti GA, Tundis R, Loizzo MR, Menichini F (2007) In vitro activities of Citrus medica L. vc. Diamante (Diamante citron) relevant to treatment of diabetes and Alzheimer’s disease. Phytother Res 21:427–433

    Article  PubMed  CAS  Google Scholar 

  18. Vignes M, Maurice T, Lante F, Nedjar M, Thethi K, Guiramand J, Recasens M (2006) Anxiolytic properties of green tea polyphenol (x)-epigallocatechin gallate (EGCG). Brain Res 1110:102–115

    Article  PubMed  CAS  Google Scholar 

  19. Moraes J, Carvalho AA, Nakano E, Almeida AA, Marques TH, Andrade LN, Freitas RM, Sousa DP (2013) Anthelmintic activity of carvacryl acetate against Schistosoma mansoni. Parasitol Res 112:603–610

    Article  PubMed  Google Scholar 

  20. Vogel AI, Tatchell AR, Furnis BS, Hannaford AJ, Smith PWG (1996) Vogel’s textbook of practical organic chemistry, 5th edn. Prentice Hall, Englewood Cliffs, New Jersey

  21. Esterbauer H, Cheeseman KH (1990) Determination of aldehydic lipid peroxidation products: malonaldehyde and 4-hydroxynonenal. Methods Enzymol 186:407–421

    Article  PubMed  CAS  Google Scholar 

  22. Draper HH, Hadley M (1990) Malondialdehyde determination as index of lipid peroxidation. Methods Enzymol 186:421–431

    Article  PubMed  CAS  Google Scholar 

  23. Basu S, Hazra B (2006) Evaluation of nitric oxide scavenging activity, in vitro and ex vivo, of selected medicinal plants traditionally used in inflammatory diseases. Phytother Res 20:896–900

    Article  PubMed  Google Scholar 

  24. Green LC, Tannenbaum SR, Goldman P (1981) Nitrate synthesis in the germfree and conventional rat. Science 212:56–58

    Article  PubMed  CAS  Google Scholar 

  25. Lopes GKB, Schulman H, Hermes-Lima M (1999) Polyphenol tannic acid inhibits hydroxyl radical formation from Fenton reaction by complexing ferrous ions. Biochim Biophys Acta 1472:142–152

    Article  PubMed  CAS  Google Scholar 

  26. Sedlak J, Lindsay RH (1968) Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent. Anal Biochem 25:192–205

    Article  PubMed  CAS  Google Scholar 

  27. Griffith OW (1980) Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Anal Biochem 106:207–212

    Article  PubMed  CAS  Google Scholar 

  28. Sinet PM, Michelson AM, Bazin A, Lejeune J, Jerome H (1975) Increase in glutathione peroxidase activity in erythrocytes from trisomy 21 subjects. Biochem Biophys Res Commun 67:910–915

    Article  PubMed  CAS  Google Scholar 

  29. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  30. Chance B, Maehly AC (1955) Assay of catalases and peroxidases. Methods Enzymol 2:764–775

    Article  Google Scholar 

  31. Maehly AC, Chance B (1954) The assay of catalases and peroxidases. Methods Biochem Anal 1:357–359

    Article  PubMed  CAS  Google Scholar 

  32. Spanevello R, Mazzanti CM, Schmatz R, Bagatini M, Stefanello N, Correa M, Kaizer R, Maldonado P, Mazzanti A, Graça DL, Martins TB, Danesi C, Morsch VM, Schetinger MRC (2009) Effect of vitamin E on ectonucleotidase activities in synaptosomes and platelets and parameters of oxidative stress in rats experimentally demyelinated. Brain Res Bull 80:45–51

    Article  PubMed  CAS  Google Scholar 

  33. Marín-Prida J, Pentón-Rol G, Rodrigues FP, Alberici LC, Stringhetta K, Leopoldino AM, Naal Z, Polizello ACM, Llópz-Arzuaga A, Rosa MN, Liberato JL, dos Santos WF, Uyemura SA, Pentón-Arias E, Curti C, Pardo-Andreu GL (2012) C-Phycocyanin protects SH-SY5Y cells from oxidative injury, rat retina from transient ischemia and rat brain mitochondria from Ca2+/phosphate-induced impairment. Brain Res Bull 89:159L–167L

    Article  CAS  Google Scholar 

  34. Cruz VP, González-Cortés C, Pedraza-Chaverrí J, Maldonado PD, Andrés-Martínez L, Santamaría A (2006) Protective effect of S-allylcysteine on 3-nitropropionic acid-induced lipid peroxidation and mitochondrial dysfunction in rat brain synaptosomes. Brain Res Bull 68:379–383

    Article  CAS  Google Scholar 

  35. Freitas RM, Vasconcelos SMM, Souza FCCF, Viana GSB, Fonteles MMF (2005) Oxidative stress in the hippocampus after pilocarpine-induced status epilepticus in Wistar rats. FEBS J 272:1307–1312

    Article  PubMed  CAS  Google Scholar 

  36. Mello FAC, Hoffamn ME, Meneghini R (1983) Cell killing and DNA damage by hydrogen peroxide are mediated by intracellular iron. Biochem J 218:273–275

    Google Scholar 

  37. Pazdernik TL, Emerson MR, Cross R, Nelson SR, Samson FE (2001) Soman-induced seizures: limbic activity, oxidative stress and neuroprotective proteins. J Appl Toxicol 21:87–94

    Article  CAS  Google Scholar 

  38. Balausubramanian B, Pogozelski WK, Tullius TD (1998) DNA strand breaking by the hydroxyl radical is governed by the accessible surface areas of the hydrogen atoms of the DNA backbone. Proc Natl Acad Science USA 95:9738–9743

    Article  Google Scholar 

  39. Begusova M, Giliberto S, Gras J, Sy D, Charlier M, Spotheim-Maurizot M (2003) DNA radiolysis in DNA-protein complexes: a stochastic simulation of attack bu hydroxyl radicals. Int J Radiat Biol 79:385–391

    Article  PubMed  CAS  Google Scholar 

  40. Ogino T, Okada S (1995) Oxidative damage of bovine serum albumin and other enzyme proteins by iron–chelate complexes. Biochim Biophys Acta 1245:359–365

    Article  PubMed  Google Scholar 

  41. Oyagi A, Oida Y, Hara H, Izuta H, Shimazawa M, Matsunaga N, Adachi T, Hara H (2008) Protective effects of SUN N8075, a novel agent with antioxidant propertires, in in vitro and in vivo models of Parkinson′s disease. Brain Res 1214:169–176

    Article  PubMed  CAS  Google Scholar 

  42. Schereibelt G, Van Horssen J, Van Rossum S, Dijkstra CD, Drukarch B, De Vries HE (2007) Therapeutic potential and biological role of endogenous antioxidant enzymes in multiple sclerosis pathology. Brain Res Rev 56:322–330

    Article  CAS  Google Scholar 

  43. Sutton HC, Winterbourn CC (1989) On the participation of higher oxidation states of iron and copper in Fenton reactions. Freed Rad Biol Med 6:53–58

    Article  CAS  Google Scholar 

  44. Oliveira A, Almeida JPC, Freitas RM, Nascimento VS, Aguiar LMV, Júnior HVN, Fonseca FN, Viana GSB, Sousa FCF, Fonteles MMF (2007) Effects of levetiracetam in lipid peroxidation level, nitrite–nitrate formation and antioxidant enzymatic activity in mice brain after pilocarpine-induced seizures. Cell Mol Neurobiol 27:395–406

    Article  PubMed  CAS  Google Scholar 

  45. Sapakal VD, Shikalgar TS, Ghadge RV, Adnaik RS, Naikwade NS, Magdum CS (2008) In vivo screening of antioxidant profile: a review. J Herbal Med Toxicol 2:1–8

    Google Scholar 

  46. Dallaqua B, Damasceno DC (2011) Comprovação do efeito antioxidante de plantas medicinais utilizadas no tratamento do Diabetes mellitus em animais: artigo de atualização. Rev Bras Plantas Med 13:367–373

    Article  Google Scholar 

  47. Meyer AS, Isaksen A (1995) Application of enzymes as food antioxidants. Trends Food Sci Technol 6:300–304

    Article  CAS  Google Scholar 

  48. Lanfocazal M, Culcasi M, Gaven F, Pietri S, Bockaert J (1993) Nitric-oxide, superoxide and peroxynitrite—putative mediators od NMDA-induced cell-death in cerebellar granule cells. Neuropharmacol 32:1259–1266

    Article  Google Scholar 

  49. Miles AM, Gibson MF, Kirshna M, Pacelli R, Wink D, Cook JC, Grisham MB (1995) Effect of superoxide on nitric oxide-dependent N-nitrosation reactions. Free Radic Res 23:379–390

    Article  PubMed  CAS  Google Scholar 

  50. Olanow CW (1993) A radical hypothesis for neurodegeneration. Trends Neurosci 16:439–444

    Article  PubMed  CAS  Google Scholar 

  51. Okada Y, Tanaka K, Sato E, Okajima H (2008) Antioxidant activity of the new thiosulfinate derivative, S-benzylphenylmethanethiosulfinate, from Petiveria alliacea. L Org Biomol Chem 6:1097–1102

    Article  CAS  Google Scholar 

  52. Bénardais K, Pul R, Singh V, Skripuletz T, Lee DH, Linker RA, Gudi V, Stangel M (2013) Effects of fumaric acid esters on blood–brain barrier tight junction proteins. Neurosci Lett 555:165–170

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank the National Council of Technological and Scientific Development (CNPq/Brazil) and the Research Supporting Foundation of State of Piaui (FAPEPI/Brazil) for the financial support and Stênio Gardel Maia for technical assistance.

Conflict of interest

The authors state no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lúcio Fernandes Pires or Rivelilson Mendes de Freitas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pires, L.F., Costa, L.M., de Almeida, A.A.C. et al. Is There a Correlation Between In Vitro Antioxidant Potential and In Vivo Effect of Carvacryl Acetate Against Oxidative Stress in Mice Hippocampus?. Neurochem Res 39, 758–769 (2014). https://doi.org/10.1007/s11064-014-1267-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-014-1267-5

Keywords

Navigation