Skip to main content

Advertisement

Log in

Intravenous Administration of Human Umbilical Cord Mesenchymal Stem Cells Improves Cognitive Impairments and Reduces Amyloid-Beta Deposition in an AβPP/PS1 Transgenic Mouse Model

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is characterized by Amyloid-β (Aβ) deposition in senile plaques in specific areas of the brain and by intraneuronal p-tau accumulation in neurofibrillary tangles. Cumulative evidence supports that oxidative stress is an important factor in the pathogenesis of AD and contributes to Aβ generation. However, there is no effective treatment for AD. Human umbilical cord mesenchymal stem cells (HUMSCs) have potential therapeutic value for the treatment of neurological disease. However, the therapeutic impact of systemic administration of HUMSCs and their mechanism of action in AD have not yet been determined. Here, we found that intravenous infusion of HUMSCs significantly improved spatial learning and alleviated memory decline in an AβPP/PS1 mouse model of AD. HUMSC treatment also increased glutathione (GSH) activity and ratio of GSH to oxidative glutathione as well as superoxide dismutase activity, while decreasing malondialdehyde activity and protein carbonyl level, which suggests that HUMSC infusion alleviated oxidative stress in AβPP/PS1 mice. In addition, HUMSC infusion reduced β-secretase 1 and CTFβ, thus reducing Aβ deposition in mice. HUMSCs may have beneficial effects in the prevention and treatment of AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Huang HC, Jiang ZF (2009) Accumulated amyloid-beta peptide and hyperphosphorylated tau protein: relationship and links in Alzheimer’s disease. J Alzheimers Dis 16:15–27

    PubMed  CAS  Google Scholar 

  2. Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297:353–356

    Article  PubMed  CAS  Google Scholar 

  3. Vassar R, Bennett BD, Babu-Khan S, Kahn S, Mendiaz EA, Denis P, Teplow DB, Ross S, Amarante P, Loeloff R, Luo Y, Fisher S, Fuller J, Edenson S, Lile J, Jarosinski MA, Biere AL, Curran E, Burgess T, Louis JC, Collins F, Treanor J, Rogers G, Citron M (1999) Beta-secretase cleavage of Alzheimer’s amyloid precursor protein by the transmembrane aspartic protease BACE. Science 286:735–741

    Article  PubMed  CAS  Google Scholar 

  4. De Strooper B, Saftig P, Craessaerts K, Vanderstichele H, Guhde G, Annaert W, Von Figura K, Van Leuven F (1998) Deficiency of presenilin-1 inhibits the normal cleavage of amyloid precursor protein. Nature 391:387–390

    Article  PubMed  Google Scholar 

  5. Bates KA, Verdile G, Li QX, Ames D, Hudson P, Masters CL, Martins RN (2009) Clearance mechanisms of Alzheimer’s amyloid-beta peptide: implications for therapeutic design and diagnostic tests. Mol Psychiatry 14:469–486

    Article  PubMed  CAS  Google Scholar 

  6. Schuessel K, Schafer S, Bayer TA, Czech C, Pradier L, Muller-Spahn F, Muller WE, Eckert A (2005) Impaired Cu/Zn-SOD activity contributes to increased oxidative damage in APP transgenic mice. Neurobiol Dis 18:89–99

    Article  PubMed  CAS  Google Scholar 

  7. Sultana R, Butterfield DA (2010) Role of oxidative stress in the progression of Alzheimer’s disease. J Alzheimers Dis 19:341–353

    PubMed  Google Scholar 

  8. Zhang W, Bai M, Xi Y, Hao J, Liu L, Mao N, Su C, Miao J, Li Z (2012) Early memory deficits precede plaque deposition in APPswe/PS1dE9 mice: involvement of oxidative stress and cholinergic dysfunction. Free Radic Biol Med 52:1443–1452

    Article  PubMed  CAS  Google Scholar 

  9. Chauhan V, Chauhan A (2006) Oxidative stress in Alzheimer’s disease. Pathophysiology 13:195–208

    Article  PubMed  CAS  Google Scholar 

  10. Lovell MA, Xiong S, Lyubartseva G, Markesbery WR (2009) Organoselenium (Sel-Plex diet) decreases amyloid burden and RNA and DNA oxidative damage in APP/PS1 mice. Free Radic Biol Med 46:1527–1533

    Article  PubMed  CAS  Google Scholar 

  11. Lanza C, Morando S, Voci A, Canesi L, Principato MC, Serpero LD, Mancardi G, Uccelli A, Vergani L (2009) Neuroprotective mesenchymal stem cells are endowed with a potent antioxidant effect in vivo. J Neurochem 110:1674–1684

    Article  PubMed  CAS  Google Scholar 

  12. Kim WS, Park BS, Kim HK, Park JS, Kim KJ, Choi JS, Chung SJ, Kim DD, Sung JH (2008) Evidence supporting antioxidant action of adipose-derived stem cells: protection of human dermal fibroblasts from oxidative stress. J Dermatol Sci 49:133–142

    Article  PubMed  CAS  Google Scholar 

  13. Huang P, Lin LM, Wu XY, Tang QL, Feng XY, Lin GY, Lin X, Wang HW, Huang TH, Ma L (2010) Differentiation of human umbilical cord Wharton’s jelly-derived mesenchymal stem cells into germ-like cells in vitro. J Cell Biochem 109:747–754

    PubMed  CAS  Google Scholar 

  14. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315–317

    Article  PubMed  CAS  Google Scholar 

  15. Vorhees CV, Williams MT (2006) Morris water maze: procedures for assessing spatial and related forms of learning and memory. Nat Protoc 1:848–858

    Article  PubMed  Google Scholar 

  16. Wei L, Yang H, Xie Z, Yang S, Zhao C, Wang P, Xu S, Miao J, Zhao B, Bi J (2012) A butyrolactone derivative 3BDO alleviates memory deficits and reduces amyloid-beta deposition in an AbetaPP/PS1 transgenic mouse model. J Alzheimers Dis

  17. Dong HS, Li L, Song ZH, Tang J, Xu B, Zhai XW, Sun LL, Zhang P, Li ZB, Pan QJ, Shi QH, Shen W (2009) Premeiotic fetal murine germ cells cultured in vitro form typical oocyte-like cells but do not progress through meiosis. Theriogenology 72:219–231

    Article  PubMed  CAS  Google Scholar 

  18. Hu D, Cao Y, He R, Han N, Liu Z, Miao L, Yin J (2012) Schizandrin, an antioxidant lignan from Schisandra chinensis, ameliorates Abeta1-42-induced memory impairment in mice. Oxid Med Cell Longev 2012:721721

    Article  PubMed  Google Scholar 

  19. Naslund J, Haroutunian V, Mohs R, Davis KL, Davies P, Greengard P, Buxbaum JD (2000) Correlation between elevated levels of amyloid beta-peptide in the brain and cognitive decline. JAMA 283:1571–1577

    Article  PubMed  CAS  Google Scholar 

  20. Zhou Z, Chen Y, Zhang H, Min S, Yu B, He B, Jin A (2013) Comparison of mesenchymal stromal cells from human bone marrow and adipose tissue for the treatment of spinal cord injury. Cytotherapy 15:434–448

    Article  PubMed  CAS  Google Scholar 

  21. Sakai K, Yamamoto A, Matsubara K, Nakamura S, Naruse M, Yamagata M, Sakamoto K, Tauchi R, Wakao N, Imagama S, Hibi H, Kadomatsu K, Ishiguro N, Ueda M (2012) Human dental pulp-derived stem cells promote locomotor recovery after complete transection of the rat spinal cord by multiple neuro-regenerative mechanisms. J Clin Invest 122:80–90

    PubMed  CAS  Google Scholar 

  22. Cai Z, Zhao B, Ratka A (2011) Oxidative stress and beta-amyloid protein in Alzheimer’s disease. Neuromolecular Med 13:223–250

    Article  PubMed  CAS  Google Scholar 

  23. Valle-Prieto A, Conget PA (2010) Human mesenchymal stem cells efficiently manage oxidative stress. Stem Cells Dev 19:1885–1893

    Article  PubMed  CAS  Google Scholar 

  24. Chen YT, Sun CK, Lin YC, Chang LT, Chen YL, Tsai TH, Chung SY, Chua S, Kao YH, Yen CH, Shao PL, Chang KC, Leu S, Yip HK (2011) Adipose-derived mesenchymal stem cell protects kidneys against ischemia-reperfusion injury through suppressing oxidative stress and inflammatory reaction. J Transl Med 9:51

    Article  PubMed  CAS  Google Scholar 

  25. Zhuo W, Liao L, Xu T, Wu W, Yang S, Tan J (2011) Mesenchymal stem cells ameliorate ischemia-reperfusion-induced renal dysfunction by improving the antioxidant/oxidant balance in the ischemic kidney. Urol Int 86:191–196

    Article  PubMed  CAS  Google Scholar 

  26. Zhou Y, Xu H, Xu W, Wang B, Wu H, Tao Y, Zhang B, Wang M, Mao F, Yan Y, Gao S, Gu H, Zhu W, Qian H (2013) Exosomes released by human umbilical cord mesenchymal stem cells protect against cisplatin-induced renal oxidative stress and apoptosis in vivo and in vitro. Stem Cell Res Ther 4:34

    Article  PubMed  CAS  Google Scholar 

  27. Bains JS, Shaw CA (1997) Neurodegenerative disorders in humans: the role of glutathione in oxidative stress-mediated neuronal death. Brain Res Brain Res Rev 25:335–358

    Article  PubMed  CAS  Google Scholar 

  28. Zhang C, Rodriguez C, Spaulding J, Aw TY, Feng J (2012) Age-dependent and tissue-related glutathione redox status in a mouse model of Alzheimer’s disease. J Alzheimers Dis 28:655–666

    PubMed  CAS  Google Scholar 

  29. Zhang MJ, Sun JJ, Qian L, Liu Z, Zhang Z, Cao W, Li W, Xu Y (2011) Human umbilical mesenchymal stem cells enhance the expression of neurotrophic factors and protect ataxic mice. Brain Res 1402:122–131

    Article  PubMed  CAS  Google Scholar 

  30. Stemberger S, Jamnig A, Stefanova N, Lepperdinger G, Reindl M, Wenning GK (2011) Mesenchymal stem cells in a transgenic mouse model of multiple system atrophy: immunomodulation and neuroprotection. PLoS One 6:e19808

    Article  PubMed  CAS  Google Scholar 

  31. Gordon D, Pavlovska G, Glover CP, Uney JB, Wraith D, Scolding NJ (2008) Human mesenchymal stem cells abrogate experimental allergic encephalomyelitis after intraperitoneal injection, and with sparse CNS infiltration. Neurosci Lett 448:71–73

    Article  PubMed  CAS  Google Scholar 

  32. Gutierrez-Fernandez M, Rodriguez-Frutos B, Ramos-Cejudo J, Teresa Vallejo-Cremades M, Fuentes B, Cerdan S, Diez-Tejedor E (2013) Effects of intravenous administration of allogenic bone marrow- and adipose tissue-derived mesenchymal stem cells on functional recovery and brain repair markers in experimental ischemic stroke. Stem Cell Res Ther 4:11

    Article  PubMed  CAS  Google Scholar 

  33. Liu R, Zhang Z, Lu Z, Borlongan C, Pan J, Chen J, Qian L, Liu Z, Zhu L, Zhang J, Xu Y (2013) Human umbilical cord stem cells ameliorate experimental autoimmune encephalomyelitis by regulating immunoinflammation and remyelination. Stem Cells Dev 22:1053–1062

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by National Basic Research Program of China (2009CB526507), the National Natural Science Foundation of China (No. 81171214), Shandong Province Natural Science Foundation (ZR2011HM064), and the science and technology project of Jinan city (200906011-2), National Natural Science Foundation of China (No. 81371420).

Conflict of interest

All authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JianZhong Bi.

Additional information

Hui Yang and CaiBin Yue should be considered first authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, H., Yue, C., Yang, H. et al. Intravenous Administration of Human Umbilical Cord Mesenchymal Stem Cells Improves Cognitive Impairments and Reduces Amyloid-Beta Deposition in an AβPP/PS1 Transgenic Mouse Model. Neurochem Res 38, 2474–2482 (2013). https://doi.org/10.1007/s11064-013-1161-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-013-1161-6

Keywords

Navigation