Skip to main content
Log in

Class I Histone Deacetylase Inhibitor Valproic Acid Reverses Cognitive Deficits in a Mouse Model of Septic Encephalopathy

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Accumulating evidence suggests that histone deacetylase inhibitor exert neuroprotective effects in animal models of neurological diseases. We investigated for the first time whether class I histone deacetylase inhibitor valproic acid (VPA) can reverse cognitive deficits in a mouse model of sepsis-associated encephalopathy (SAE). Moreover, the possible mechanisms of protection were also explored. A mouse model of SAE was induced in adult male mice by cecal ligation and puncture (CLP). Mice received an administration of saline or VPA (100 mg/kg) once daily for 14 consecutive days starting either immediately or 2 weeks after operation. Furthermore, the TrkB antagonist K252a was used in another group of experiment to investigate whether brain-derived neurotrophic factor (BDNF)-TrkB signaling pathway is involved in the protection of VPA. Our data suggested that CLP resulted in significant cognitive impairments accompanied by increased expressions in interleukin-1β and caspase-3, and decreased expressions in BDNF, phospho-TrkB (pTrkB), postsynaptic density 95, and synapses, which were reversed by VPA. However, TrkB antagonist K252a abolished the beneficial effects of VPA with regard to cognition and decreased pTrkB expression and synapses in the hippocampus. Taken together, the findings of the present study suggested chronic treatment with VPA reverses cognitive deficits through mechanisms probably via a reduction in inflammation and apoptosis in the brain, as well as the activation of the BDNF-TrkB signaling pathway in a mouse model of SAE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Iwashyna TJ, Ely EW, Smith DM et al (2010) Long-term cognitive impairment and functional disability among survivors of severe sepsis. JAMA 304(16):1787–1794. doi:10.1001/jama.2010.1553

    Article  PubMed  CAS  Google Scholar 

  2. Iwashyna TJ, Cooke CR, Wunsch H et al (2012) Population burden of long-term survivorship after severe sepsis in older Americans. J Am Geriatr Soc 60(6):1070–1077. doi:10.1111/j.1532-5415.2012.03989.x

    Article  PubMed  Google Scholar 

  3. Gofton TE, Young GB (2012) Sepsis-associated encephalopathy. Nat Rev Neurol 8(10):557–566. doi:10.1038/nrneurol.2012.183

    Article  PubMed  CAS  Google Scholar 

  4. Granger JI, Ratti PL, Datta SC et al (2013) Sepsis-induced morbidity in mice: effects on body temperature, body weight, cage activity, social behavior and cytokines in brain. Psychoneuroendocrinology 38(7):1047–1057. doi:10.1016/j.psyneuen.2012.10.010

    Article  PubMed  CAS  Google Scholar 

  5. Peleg S, Sananbenesi F, Zovoilis A et al (2010) Altered histone acetylation is associated with age-dependent memory impairment in mice. Science 328(5979):753–756. doi:10.1126/science.1186088

    Article  PubMed  CAS  Google Scholar 

  6. Guan JS, Haggarty SJ, Giacometti E et al (2009) HDAC2 negatively regulates memory formation and synaptic plasticity. Nature 459(7243):55–60. doi:10.1038/nature07925

    Article  PubMed  CAS  Google Scholar 

  7. Gräff J, Rei D, Guan JS et al (2012) An epigenetic blockade of cognitive functions in the neurodegenerating brain. Nature 483(7388):222–226. doi:10.1038/nature10849

    Article  PubMed  Google Scholar 

  8. Gräff J, Tsai LH (2013) Histone acetylation: molecular mnemonics on the chromatin. Nat Rev Neurosci 14(2):97–111. doi:10.1038/nrn3427

    Article  PubMed  Google Scholar 

  9. Ji MH, Zhu XL, Liu FF et al (2012) Alpha 2A-adrenoreceptor blockade improves sepsis-induced acute lung injury accompanied with depressed high mobility group box-1 levels in rats. Cytokine 60(3):639–645. doi:10.1016/j.cyto.2012.08.002

    Article  PubMed  CAS  Google Scholar 

  10. Kilgore M, Miller CA, Fass DM et al (2010) Inhibitors of class 1 histone deacetylases reverse contextual memory deficits in a mouse model of Alzheimer’s disease. Neuropsychopharmacology 35(4):870–880. doi:10.1038/npp.2009.197

    Article  PubMed  CAS  Google Scholar 

  11. Koike H, Fukumoto K, Iijima M et al (2013) Role of BDNF/TrkB signaling in antidepressant-like effects of a group II metabotropic glutamate receptor antagonist in animal models of depression. Behav Brain Res 238:48–52. doi:10.1016/j.bbr.2012.10.023

    Article  PubMed  CAS  Google Scholar 

  12. Wan Y, Xu J, Ma D et al (2007) Postoperative impairment of cognitive function in rats: a possible role for cytokine-mediated inflammation in the hippocampus. Anesthesiology 106(3):436–443

    Article  PubMed  Google Scholar 

  13. Head BP, Patel HH, Niesman IR et al (2009) Inhibition of p75 neurotrophin receptor attenuates isoflurane-mediated neuronal apoptosis in the neonatal central nervous system. Anesthesiology 110(4):813–825. doi:10.1097/ALN.0b013e31819b602b

    Article  PubMed  CAS  Google Scholar 

  14. Mombelli M, Lugrin J, Rubino I et al (2011) Histone deacetylase inhibitors impair antibacterial defenses of macrophages. J Infect Dis 204(9):1367–1374. doi:10.1093/infdis/jir553

    Article  PubMed  CAS  Google Scholar 

  15. Shakespear MR, Halili MA, Irvine KM et al (2011) Histone deacetylases as regulators of inflammation and immunity. Trends Immunol 32(7):335–343. doi:10.1016/j.it.2011.04.001

    Article  PubMed  CAS  Google Scholar 

  16. Roger T, Lugrin J, Le Roy D et al (2011) Histone deacetylase inhibitors impair innate immune responses to Toll-like receptor agonists and to infection. Blood 117(4):1205–1217. doi:10.1182/blood-2010-05-284711

    Article  PubMed  CAS  Google Scholar 

  17. Dash PK, Orsi SA, Zhang M et al (2010) Valproate administered after traumatic brain injury provides neuroprotection and improves cognitive function in rats. PLoS One (6):e11383. doi:10.1371/journal.pone.0011383

  18. Kazantsev AG, Thompson LM (2008) Therapeutic application of histone deacetylase inhibitors for central nervous system disorders. Nat Rev Drug Discov 7(10):854–868. doi:10.1038/nrd2681

    Article  PubMed  CAS  Google Scholar 

  19. Li Y, Liu B, Gu X et al (2012) Creating a “pro-survival” phenotype through epigenetic modulation. Surgery 152(3):455–464. doi:10.1016/j.surg.2012.06.036

    Article  PubMed  Google Scholar 

  20. Sailhamer EA, Li Y, Smith EJ et al (2008) Acetylation: a novel method for modulation of the immune response following trauma/hemorrhage and inflammatory second hit in animals and humans. Surgery 144(2):204–216. doi:10.1016/j.surg.2008.03.034

    Article  PubMed  Google Scholar 

  21. Peng GS, Li G, Tzeng NS et al (2005) Valproate pretreatment protects dopaminergic neurons from LPS-induced neurotoxicity in rat primary midbrain cultures: role of microglia. Brain Res Mol Brain Res 134(1):162–169

    Article  PubMed  CAS  Google Scholar 

  22. Imamura Y, Wang H, Matsumoto N et al (2011) Interleukin-1β causes long-term potentiation deficiency in a mouse model of septic encephalopathy. Neuroscience 187:63–69. doi:10.1016/j.neuroscience.2011.04.063

    Article  PubMed  CAS  Google Scholar 

  23. Comim CM, Barichello T, Grandgirard D et al (2013) Caspase-3 mediates in part hippocampal apoptosis in sepsis. Mol Neurobiol 47(1):394–398. doi:10.1007/s12035-012-8354-x

    Article  PubMed  CAS  Google Scholar 

  24. Yokoo H, Chiba S, Tomita K et al (2012) Neurodegenerative evidence in mice brains with cecal ligation and puncture-induced sepsis: preventive effect of the free radical scavenger edaravone. PLoS One 7(12):e51539. doi:10.1371/journal.pone.0051539

    Article  PubMed  CAS  Google Scholar 

  25. Suda S, Katsura K, Kanamaru T et al (2013) Valproic acid attenuates ischemia-reperfusion injury in the rat brain through inhibition of oxidative stress and inflammation. Eur J Pharmacol 707(1–3):26–31. doi:10.1016/j.ejphar.2013.03.020

    Article  PubMed  CAS  Google Scholar 

  26. Devi L, Ohno M (2012) 7,8-dihydroxyflavone, a small-molecule TrkB agonist, reverses memory deficits and BACE1 elevation in a mouse model of Alzheimer’s disease. Neuropsychopharmacology 37(2):434–444. doi:10.1038/npp.2011.191

    Article  PubMed  CAS  Google Scholar 

  27. Diógenes MJ, Costenla AR, Lopes LV et al (2011) Enhancement of LTP in aged rats is dependent on endogenous BDNF. Neuropsychopharmacology 36(9):1823–1836. doi:10.1038/npp.2011.64

    Article  PubMed  Google Scholar 

  28. Zeng Y, Tan M, Kohyama J et al (2011) Epigenetic enhancement of BDNF signaling rescues synaptic plasticity in aging. J Neurosci 31(49):17800–17810. doi:10.1523/JNEUROSCI.3878-11

    Article  PubMed  CAS  Google Scholar 

  29. Bardai FH, D’Mello SR (2011) Selective toxicity by HDAC3 in neurons: regulation by Akt and GSK3beta. J Neurosci 31(5):1746–1751. doi:10.1523/JNEUROSCI.5704-10.2011

    Article  PubMed  CAS  Google Scholar 

  30. Kim MS, Akhtar MW, Adachi M et al (2012) An essential role for histone deacetylase 4 in synaptic plasticity and memory formation. J Neurosci 32(32):10879–10886. doi:10.1523/JNEUROSCI.2089-12.2012

    Article  PubMed  CAS  Google Scholar 

  31. Pandey UB, Nie Z, Batlevi Y et al (2007) HDAC6 rescues neurodegeneration and provides an essential link between autophagy and the UPS. Nature 447(7146):859–863

    Article  PubMed  CAS  Google Scholar 

  32. Lewis C, Deshpande A, Tesar GE et al (2012) Valproate-induced hyperammonemic encephalopathy: a brief review. Curr Med Res Opin 28(6):1039–1042. doi:10.1185/03007995.2012.694362

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Zhiyi Zuo for critical evaluation of this paper and Yu-xiu Liu for his suggestions with regard to statistical analysis. This work was supported by National Natural Science Foundation of China (No. 81271216) and Natural Science Foundation of Jiangsu Province (No. BK2012778), and attributed to Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China.

Conflict of interest

The authors have no potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Muhuo Ji or Jianjun Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, J., Dong, L., Zhang, M. et al. Class I Histone Deacetylase Inhibitor Valproic Acid Reverses Cognitive Deficits in a Mouse Model of Septic Encephalopathy. Neurochem Res 38, 2440–2449 (2013). https://doi.org/10.1007/s11064-013-1159-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-013-1159-0

Keywords

Navigation