Skip to main content

Advertisement

Log in

Modulation of Ionotropic GABA Receptors by 6-Methoxyflavanone and 6-Methoxyflavone

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

We evaluated the effects of 6-methoxyflavanone and 6-methoxyflavone on wild-type α1/α2β2γ2L GABAA and ρ1 GABAC receptors and on mutant ρ1I307S, ρ1W328 M, ρ1I307S/W328 M GABAC receptors expressed in Xenopus oocytes using two-electrode voltage clamp and radioligand binding. 6-Methoxyflavanone and 6-methoxyflavone act as a flumazenil-insensitive positive allosteric modulator of GABA responses at human recombinant α1β2γ2L and α2β2γ2L GABAA receptors. However, unlike 6-methoxyflavone, 6-methoxyflavanone was relatively inactive at α1β2 GABAA receptors. 6-Methoxyflavanone inhibited [3H]-flunitrazepam binding to rat brain membranes. Both flavonoids were found to be inactive as modulators at ρ1, ρ1I307S and ρ1W328 M GABA receptors but acted as positive allosteric modulators of GABA at the benzodiazepine sensitive ρ1I307S/W328 M GABA receptors. This double mutant retains ρ1 properties of being insensitive to bicuculline and antagonised by TPMPA and THIP. Additionally, 6-methoxyflavanone was also a partial agonist at ρ1W328 M GABA receptors. The relative inactivity of 6-methoxyflavanone at α1β2 GABAA receptors and it’s partial agonist action at ρ1W328 M GABA receptors suggest that it exhibits a unique profile not matched by other flavonoids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

DMSO:

Dimethyl sulfoxide

GABA:

γ-Amino butyric acid

GABAA :

γ-Amino butyric acid-A receptor

THIP:

4,5,6,7-Tetrahydroisoxazolo[5,4-c]pyridin-3-ol

TPMPA:

(1,2,5,6-Tetrahydropyridin-4-yl)methylphosphinic acid

References

  1. Hanrahan JR, Chebib M, Johnston GAR (2011) Flavonoid modulation of GABAA receptors. Br J Pharmacol 163:234–245

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Walters RJ, Hadley SH, Morris DW, Amin J (2000) Benzodiazepines act on GABAA receptors via two distinct and separable mechanisms. Nature Neurosci 3:1274–1281

    Article  CAS  PubMed  Google Scholar 

  3. Hui KM, Wang XH, Xue H (2000) Interaction of flavones from the roots of Scutellaria baicalensis with the benzodiazepine site. Planta Med 66:91–93

    Article  CAS  PubMed  Google Scholar 

  4. Marder M, Zinczuk J, Colombo MI, Wasowki C, Viola H, Wolfman C, Medina JH, Ruveda EA, Paladini A (1997) Synthesis of halogenated/nitrated flavone derivatives and evaluation of their affinity for the central benzodiazepine receptor. Bio Med Chem Lett 7:2003–2008

    Article  CAS  Google Scholar 

  5. Medina JH, Viola H, Wolfman C, Marder M, Wasowski C, Calvo D, Paladini AC (1998) Neuroactive flavonoids: new ligands for the benzodiazepine receptors. Phytomedicine 5(2):235–243

    Article  CAS  PubMed  Google Scholar 

  6. Nielsen M, Frokjaer S, Braestrup C (1988) High affinity of the naturally-occurring biflavonoid, amentoflavone, to brain benzodiazepine receptors in vitro. Biochem Pharmacol 37:3285–3287

    Article  CAS  PubMed  Google Scholar 

  7. Griebel G, Perrault G, Tan S, Schoemaker H, Sanger DJ (1999) Pharmacological studies on synthetic flavonoids: comparison with diazepam. Neuropharmacol 38:965–977

    Article  CAS  Google Scholar 

  8. Marder M, Viola H, Wasowski C, Wolfman C, Waterman PG, Medina JH, Paladini A (1995) 6,3′-Dinitroflavone, a novel high affinity ligand for the benzodiazepine receptor with potent anxiolytic properties. Bioorg Med Chem Lett 5:2717–2720

    Article  CAS  Google Scholar 

  9. Salgueiro JB, Ardenghi P, Dias M, Ferreira MBC, Izquierdo I, Medina JH (1997) Anxiolytic and synthetic flavonoid ligands of the central benzodiazepine receptor have no effect on memory tasks in rats. Pharmacol Biochem Behav 58:887–891

    Article  CAS  PubMed  Google Scholar 

  10. Viola H, Wasowki C, Levi de Stein M, Wolfman C, Silveira R, Dajas F, Medina JH, Paladini A (1995) Apigenin, a component of Matricaria recutita flowers, is a central benzodiazepine receptors-ligand with anxiolytic effects. Planta Med 61:213–216

    Article  CAS  PubMed  Google Scholar 

  11. Wolfman C, Viola H, Marder M, Ardenghi P, Wasowki C, Schroder N, Izquierdo I, Ruveda E, Paladini A, Medina JH (1998) Pharmacological characterisation of 6-bromo-3′-nitroflavone, a synthetic flavonoid with high affinity for the benzodiazepine receptors. Pharmacol Biochem Behav 61:239–246

    Article  CAS  PubMed  Google Scholar 

  12. Hall BJ, Chebib M, Hanrahan JR, Johnston GAR (2004) Flumazenil-independent positive modulation of γ-aminobutyric acid action by 6-methylflavone at human recombinant α1β2γ2L and α1β2 GABAA receptors. Eur J Pharmacol 491:1–8

    Article  CAS  PubMed  Google Scholar 

  13. Hall BJ, Chebib M, Hanrahan JR, Johnston GAR (2005) 6-Methylflavanone, a more efficacious positive allosteric modulator of γ-aminobutyric acid (GABA) action at human recombinant α2β2γ2L than at α1β2γ2L and α1β2 GABAA receptors expressed in Xenopus oocytes. Eur J Pharmacol 512:97–104

    Article  CAS  PubMed  Google Scholar 

  14. Huen MSY, Hui K, Leung JWC, Sigel E, Baur R, Wong T, Xue H (2003) Naturally occurring 2′-hydroxyl-substituted flavonoids as high-affinity benzodiazepine site ligands. Biochem Pharmacol 66:2397–2407

    Article  CAS  PubMed  Google Scholar 

  15. Karim N, Curmi J, Gavande N, Johnston GAR, Hanrahan JR, Tierney ML, Chebib M (2012) 2′-Methoxy-6-methylflavone: a novel anxiolytic and sedative with subtype selective activating and modulating actions at GABAA receptors. Br J Pharmacol 165:880–896

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Karim N, Gavande N, Wellendorph P, Johnston GAR, Hanrahan JR, Chebib M (2011) 3-Hydroxy-2′-methoxy-6-methylflavone: a potent anxiolytic with a unique selectivity profile at GABAA receptor subtypes. Biochem Pharmacol 82:1971–1983

    Article  CAS  PubMed  Google Scholar 

  17. Kavvadias D, Sand P, Youdim K, Qaiser M, Rice-Evans C, Baur R, Sigel E, Rausch W, Riederer P, Schreier P (2004) The flavone hispidulin, a benzodiazepine receptor ligand with positive allosteric properties, traverses the blood-brain barrier and exhibits anticonvulsive effects. Br J Pharmacol 142:811–820

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Hanrahan JR, Chebib M, Davucheron NLM, Hall BJ, Johnston GAR (2003) Semisynthetic preparation of amentoflavone: a negative modulator at GABAA receptors. Bioorg Med Chem Lett 13(14):2281–2284

    Article  CAS  PubMed  Google Scholar 

  19. Wang F, Xu Z, Yuen CT, Chow CY, Lui YL, Tsang SY, Xue H (2007) 6,20-Dihydroxyflavone, a subtype-selective partial inverse agonist of GABAA receptor benzodiazepine site. Neuropharmacol 53:574–582

    Article  CAS  Google Scholar 

  20. Huang XQ, Liu T, Gu JD, Luo XM, Ji RY, Cao Y, Xue H, Wong JTF, Wong BL, Pei G, Jiang HL, Chen KX (2001) 3D-QSAR model of flavonoids binding at benzodiazepine site in GABA(A) receptors. J Med Chem 44:1883–1891

    Article  CAS  PubMed  Google Scholar 

  21. Marder M, Estiu G, Blanch LB, Viola H, Wasowski C, Medina JH, Paladini AC (2001) Molecular modeling and QSAR analysis of the interaction of flavone derivatives with the benzodiazepine binding site of the GABAA receptor complex. Bioorg Med Chem 9:323–335

    Article  CAS  PubMed  Google Scholar 

  22. Hanrahan JR, Mewett KN, Chebib M, Burden PM, JGA R (2001) An improved, versatile synthesis of the GABAC antagonists (1,2,5,6-tetrahydropyridin-4-yl)methylphosphinic acid (TPMPA) and (piperidin-4-yl)methylphosphinic acid (P4MPA). J Chem Soc Perkin Trans 1:2389–2392

    Article  Google Scholar 

  23. Huang SH, Duke RK, Chebib M, Sasaki K, Wada K, Johnston GAR (2003) Bilobalide, a sesquiterpene trilactone from Gingko biloba, is an antagonist at recombinant α1β2γ2L GABAA receptors. Eur J Pharmacol 464:1–8

    Article  CAS  PubMed  Google Scholar 

  24. Hosie AM, Dunne EL, Harvey RJ, Smart TG (2003) Zinc-mediated inhibition of GABAA receptors: discrete binding sites underlie subtype specificity. Nature Neurosci 4:362–369

    Article  Google Scholar 

  25. Wellendorph P, Høg S, Sabbatini P, Pedersen MH, Martiny L, Knudsen GM, Frølund B, Clausen RP, Bräuner-Osborne H (2010) Novel radioiodinated γ-hydroxybutyric acid analogues for radiolabeling and photo linking of high-affinity γ-hydroxybutyric acid binding sites. J Pharmacol Exp Ther 335:458–464

    Article  CAS  PubMed  Google Scholar 

  26. Ebert B, Wafford KA, Whiting PJ, Krogsgaard-Larsen P, Kemp JA (1994) Molecular pharmacology of γ-aminobutyric acid type A receptor agonists and partial agonists in oocytes Injected with different α, β, and γ -receptor subunit combinations. Mol Pharmacol 46:957–963

    CAS  PubMed  Google Scholar 

  27. Kusama T, Spivak CE, Whiting P, Dawson VL, Scaeffer JC, Uhl GR (1993) Pharmacology of GABA ρ1 and GABA α/β receptors expressed in xenopus oocytes and COS cells. Br J Pharmacol 109:200–206

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Hansen RS, Paulsen I, Davies M (2005) Determinants of amentoflavone interaction at the GABAA receptor. Eur J Pharmacol 519:199–207

    Article  CAS  PubMed  Google Scholar 

  29. Fernandez S, Mewett K, Hanrahan J, Chebib M, Johnston G (2008) Flavan-3-ol derivatives are positive modulators of GABAA receptors with higher efficacy for the alpha2 subtype and anxiolytic action in mice. Neuropharmacol 55:900–907

    Article  CAS  Google Scholar 

  30. Alexander SPH, Mathie A, Peters JA (2009) Guide to receptors and channels (GRAC), 4th edition. Br J Pharmacol 158(Suppl. 1):S1–S254

    CAS  Google Scholar 

  31. Chebib M, Johnston GAR (2000) GABA-activated ligand gated ion channels: medicinal chemistry and molecular biology. J Med Chem 43:1–21

    Article  Google Scholar 

  32. Amin J (1999) A single hydrophobic residue confers barbiturate sensitivity to γ-aminobutyric acid type C receptor. Mol Pharmacol 55:411–423

    CAS  PubMed  Google Scholar 

  33. Belelli D, Pau D, Cabras G, Peters JA, Lambert JJ (1999) A single amino acid confers barbiturate sensitivity upon the GABA ρ1 receptor. Br J Pharmacol 127:601–604

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr Paul Whiting (Merck, Sharpe and Dohme Research Laboratories, Harlow, UK) for the gift of human α1, α2, β2 and γ2L DNA, Dr George Uhl (National Institute for Drug Abuse, Baltimore, MD, USA) for the gift of human ρ1 DNA, Professor Jeremy Lambert (University of Dundee, Dundee, UK) for the gift of human ρ1I307S, ρ1W328M and ρ1W328M/I307S DNA. THIP was a gift from Prof. Povl Krogsgaard-Larsen (Copenhagen). We are also grateful to all those who performed the surgery to provide the oocytes. This work was funded by a grant from the National Health and Medical Research Council (NH&MRC). BJH was supported by an Australian Postgraduate Award and the John Lamberton Scholarship. NK acknowledges funding from The University of Malakand, Pakistan (Faculty Development Programme Scholarship) and the John Lamberton Scholarship.

Conflict of interest

The authors state no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jane R. Hanrahan.

Additional information

Special Issue: In Honor of Richard Olsen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hall, B.J., Karim, N., Chebib, M. et al. Modulation of Ionotropic GABA Receptors by 6-Methoxyflavanone and 6-Methoxyflavone. Neurochem Res 39, 1068–1078 (2014). https://doi.org/10.1007/s11064-013-1157-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-013-1157-2

Keywords

Navigation