Skip to main content

Advertisement

Log in

Selenium Compounds Prevent Amyloid β-Peptide Neurotoxicity in Rat Primary Hippocampal Neurons

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Neuropathological hallmarks of Alzheimer’s disease (AD) include amyloid plaque formation, neurofibrillary tangles, neuronal and synaptic loss. This study aims to identify the neuroprotective effects of the selenium compounds on the neurotoxicity of amyloid β(1–42) in primary cultures of murine hippocampal neurons. Samples were subjected to immunocytochemistry and western blotting techniques to determine the role of treatments on neuronal viability and synaptic protein SNAP-25. We observed a reduced cell viability amyloid β-peptide (1–42)-induced. When cells were co-treated with amyloid β-peptide (1–42) and selenium compounds, we verified a strong increase in relative cell viability and in the level of synaptic marker synaptosomal-associated protein SNAP-25 induced by selenium compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Tosun D, Schuff N, Mathis CA, Jagust W, Weiner MW (2011) Spatial patterns of brain amyloid-beta burden and atrophy rate associations in mild cognitive impairment. Brain 134:1077–1088. doi:10.1093/brain/awr044

    Article  PubMed  Google Scholar 

  2. Varadarajan S, Yatin S, Aksenova M, Butterfield DA (2000) Review: alzheimer’s amyloid beta-peptide-associated free radical oxidative stress and neurotoxicity. J Struct Biol 130:184–208. doi:10.1006/jsbi.2000.4274

    Article  PubMed  CAS  Google Scholar 

  3. Praticò D, Delanty N (2000) Oxidative injury in diseases of the central nervous system: focus on Alzheimer’s disease. Am J Med 109:577–585. doi:10.1016/S0002-9343(00)00547-7

    Article  PubMed  Google Scholar 

  4. Praticò D, Trojanowski JQ (2000) Inflammatory hypotheses: novel mechanisms of Alzheimer’s neurodegeneration and new therapeutic targets? Neurobiol Aging 21:441–445. doi:10.1016/S0197-4580(00)00141-X (Discussion 451–443)

    Article  PubMed  Google Scholar 

  5. Rayman MP (2000) The importance of selenium to human health. Lancet 356:233–241. doi:10.1016/S0140-6736(00)02490-9

    Article  PubMed  CAS  Google Scholar 

  6. Mugesh G, du Mont WW, Sies H (2001) Chemistry of biologically important synthetic organoselenium compounds. Chem Rev 101:2125–2179. doi:10.1021/cr000426w

    Article  PubMed  CAS  Google Scholar 

  7. Nogueira CW, Zeni G, Rocha JB (2004) Organoselenium and organotellurium compounds: toxicology and pharmacology. Chem Rev 104:6255–6285. doi:10.1021/cr0406559

    Article  PubMed  CAS  Google Scholar 

  8. Ghisleni G, Porciúncula LO, Mioranzza S, Boeck CR, Rocha JB, Souza DO (2008) Selenium compounds counteract the stimulation of ecto-nucleotidase activities in rat cultured cerebellar granule cells: putative correlation with neuroprotective effects. Brain Res 1221:134–140. doi:10.1016/j.brainres.2008.04.033

    Article  PubMed  CAS  Google Scholar 

  9. Ghisleni G, Porciúncula LO, Cimarosti H, Batista TRJ, Salbego CG, Souza DO (2003) Diphenyl diselenide protects rat hippocampal slices submitted to oxygen-glucose deprivation and diminishes inducible nitric oxide synthase immunocontent. Brain Res 986:196–199. doi:10.1016/S0006-8993(03)03193-7

    Article  PubMed  CAS  Google Scholar 

  10. Luchese C, Pinton S, Nogueira CW (2009) Brain and lungs of rats are differently affected by cigarette smoke exposure: antioxidant effect of an organoselenium compound. Pharmacol Res 59:194–201. doi:10.1016/j.phrs.2008.11.006

    Article  PubMed  CAS  Google Scholar 

  11. Nogueira CW, Quinhones EB, Jung EA, Zeni G, Rocha JB (2003) Anti-inflammatory and antinociceptive activity of diphenyl diselenide. Inflamm Res 52:56–63. doi:10.1007/s000110300001

    Article  PubMed  CAS  Google Scholar 

  12. Savegnago L, Jesse CR, Pinto LG, Rocha JB, Nogueira CW (2007) Diphenyl diselenide attenuates acute thermal hyperalgesia and persistent inflammatory and neuropathic pain behavior in mice. Brain Res 1175:54–59. doi:10.1016/j.brainres.2007.07.086

    Article  PubMed  CAS  Google Scholar 

  13. Ghisleni G, Kazlauckas V, Both FL, Pagnussat N, Mioranzza S, Rocha JB, Souza DO, Porciúncula LO (2008) Diphenyl diselenide exerts anxiolytic-like effect in Wistar rats: putative roles of GABAA and 5HT receptors. Prog Neuropsychopharmacol Biol Psychiatry 32:1508–1515. doi:10.1016/j.pnpbp.2008.05.008

    Article  PubMed  CAS  Google Scholar 

  14. Posser T, Kaster MP, Baraúna SC, Rocha JB, Rodrigues AL, Leal RB (2009) Antidepressant-like effect of the organoselenium compound ebselen in mice: evidence for the involvement of the monoaminergic system. Eur J Pharmacol 602:85–91. doi:10.1016/j.ejphar.2008.10.055

    Article  PubMed  CAS  Google Scholar 

  15. Savegnago L, Jesse CR, Pinto LG, Rocha JB, Barancelli DA, Nogueira CW, Zeni G (2008) Diphenyl diselenide exerts antidepressant-like and anxiolytic-like effects in mice: involvement of l-arginine-nitric oxide-soluble guanylate cyclase pathway in its antidepressant-like action. Pharmacol Biochem Behav 88:418–426. doi:10.1016/j.pbb.2007.09.015

    Article  PubMed  CAS  Google Scholar 

  16. Paulmier C (1986) Synthesis and properties of selenides, in: J.E. Baldwin (Ed.), selenium reagents and intermediates in organic synthesis. Oxford Pergamon Press New York, 84–116

  17. Silva CG, Porciúncula LO, Canas PM, Oliveira CR, Cunha RA (2007) Blockade of adenosine A(2A) receptors prevents staurosporine-induced apoptosis of rat hippocampal neurons. Neurobiol Dis 27:182–189. doi:10.1016/j.nbd.2007.04.018

    Article  PubMed  CAS  Google Scholar 

  18. Frautschy SA, Baird A, Cole GM (1991) Effects of injected Alzheimer beta-amyloid cores in rat brain. Proc Natl Acad Sci USA 88:8362–8366

    Article  PubMed  CAS  Google Scholar 

  19. Han X, Ma Y, Liu X, Wang L, Qi S, Zhang Q, Du Y (2012) Changes in insulin-signaling transduction pathway underlie learning/memory deficits in an Alzheimer’s disease rat model. J Neural Transm 119:1407–1416. doi:10.1007/s00702-012-0803-1

    Article  PubMed  CAS  Google Scholar 

  20. Butterfield DA, Boyd-Kimball D (2004) Amyloid beta-peptide(1–42) contributes to the oxidative stress and neurodegeneration found in Alzheimer disease brain. Brain Pathol 14:426–432

    Article  PubMed  CAS  Google Scholar 

  21. Li Q, Zhao HF, Zhang ZF, Liu ZG, Pei XR, Wang JB, Li Y (2009) Long-term green tea catechin administration prevents spatial learning and memory impairment in senescence-accelerated mouse prone-8 mice by decreasing Abeta1-42 oligomers and upregulating synaptic plasticity-related proteins in the hippocampus. Neuroscience 163:741–749. doi:10.1016/j.neuroscience.2009.07.014

    Article  PubMed  CAS  Google Scholar 

  22. Zhang W, Hao J, Liu R, Zhang Z, Lei G, Su C, Miao J, Li Z (2011) Soluble Aβ levels correlate with cognitive deficits in the 12-month-old APPswe/PS1dE9 mouse model of Alzheimer’s disease. Behav Brain Res 222:342–350. doi:10.1016/j.bbr.2011.03.072

    Article  PubMed  CAS  Google Scholar 

  23. Canas PM, Porciúncula LO, Cunha GM, Silva CG, Machado NJ, Oliveira JM, Oliveira CR, Cunha RA (2009) Adenosine A2A receptor blockade prevents synaptotoxicity and memory dysfunction caused by beta-amyloid peptides via p38 mitogen-activated protein kinase pathway. J Neurosci 29:14741–14751. doi:10.1523/JNEUROSCI.3728-09.2009

    Article  PubMed  CAS  Google Scholar 

  24. Shiwany NA, Xie J, Guo Q (2009) Cortical neurons transgenic for human Abeta40 or Abeta42 have similar vulnerability to apoptosis despite their different amyloidogenic properties. Int J Clin Exp Pathol 2:339–352

    PubMed  CAS  Google Scholar 

  25. Ardais AP, Viola GG, Costa MS, Nunes F, Behr GA, Klamt F, Moreira JC, Souza DO, Rocha JB, Porciúncula LO (2010) Acute treatment with diphenyl diselenide inhibits glutamate uptake into rat hippocampal slices and modifies glutamate transporters, SNAP-25, and GFAP immunocontent. Toxicol Sci 113:434–443. doi:10.1093/toxsci/kfp282

    Article  PubMed  CAS  Google Scholar 

  26. Porciúncula LO, Rocha JB, Cimarosti H, Vinadé L, Ghisleni G, Salbego CG, Souza DO (2003) Neuroprotective effect of ebselen on rat hippocampal slices submitted to oxygen–glucose deprivation: correlation with immunocontent of inducible nitric oxide synthase. Neurosci Lett 346:101–104. doi:org/10.1016/S0304-3940(03)00580-9

    Article  PubMed  Google Scholar 

  27. DeKosky ST, Scheff SW (1990) Synapse loss in frontal cortex biopsies in Alzheimer’s disease: correlation with cognitive severity. Ann Neurol 27:457–464

    Article  PubMed  CAS  Google Scholar 

  28. Pinton S, da Rocha JT, Zeni G, Nogueira CW (2010) Organoselenium improves memory decline in mice: involvement of acetylcholinesterase activity. Neurosci Lett 472:56–60

    Article  PubMed  CAS  Google Scholar 

  29. Pinton S, da Rocha JT, Gai BM, Prigol M, da Rosa LV, Nogueira CW (2011) Neuroprotector effect of p,p′-methoxyl-diphenyl diselenide in a model of sporadic dementia of Alzheimer’s type in mice: contribution of antioxidant mechanism. Cell Biochem Funct 29:235–243

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by CNPq, FAPERGS and CAPES Brazil.

Conflict of interest

No conflict declared.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriele Ghisleni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Godoi, G.L., de Oliveira Porciúncula, L., Schulz, J.F. et al. Selenium Compounds Prevent Amyloid β-Peptide Neurotoxicity in Rat Primary Hippocampal Neurons. Neurochem Res 38, 2359–2363 (2013). https://doi.org/10.1007/s11064-013-1147-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-013-1147-4

Keywords

Navigation