Skip to main content
Log in

Nonsteroidal Anti-inflammatory Drugs Diclofenac and Celecoxib Attenuates Wnt/β-Catenin/Tcf Signaling Pathway in Human Glioblastoma Cells

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Glioblastoma, the most common and aggressive primary brain tumors, carry a bleak prognosis and often recur even after standard treatment modalities. Emerging evidence suggests that deregulation of the Wnt/β-catenin/Tcf signaling pathway contributes to glioblastoma progression. Nonsteroidal anti-inflammatory drugs (NSAIDs) inhibit tumor cell proliferation by suppressing Wnt/β-catenin/Tcf signaling in various human malignancies. In this study, we sought to inhibit Wnt/β-catenin/Tcf signaling in glioblastoma cells by the NSAIDs diclofenac and celecoxib. Both diclofenac and celecoxib significantly reduced the proliferation, colony formation and migration of human glioblastoma cells. Diclofenac and celecoxib downregulated β-catenin/Tcf reporter activity. Western and qRT-PCR analysis showed that diclofenac and celecoxib reduced the expression of β-catenin target genes Axin2, cyclin D1 and c-Myc. In addition, the cytoplasmic accumulation and nuclear translocation of β-catenin was significantly reduced following diclofenac and celecoxib treatment. Furthermore, diclofenac and celecoxib significantly increased phosphorylation of β-catenin and reduced the phosphorylation of GSK3β. These results clearly indicated that diclofenac and celecoxib are potential therapeutic agents against glioblastoma cells that act by suppressing the activation of Wnt/β-catenin/Tcf signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Cha YI, DuBois RN (2007) NSAIDs and cancer prevention: targets downstream of COX-2. Annu Rev Med 58:239–252

    Article  PubMed  CAS  Google Scholar 

  2. Ulrich CM, Bigler J, Potter JD (2006) Non-steroidal anti-inflammatory drugs for cancer prevention: promise, perils and pharmacogenetics. Nat Rev Cancer 6:130–140

    Article  PubMed  CAS  Google Scholar 

  3. Thun MJ, Henley SJ, Patrono C (2002) Nonsteroidal anti-inflammatory drugs as anticancer agents: mechanistic, pharmacologic, and clinical issues. J Natl Cancer Inst 94:252–266

    Article  PubMed  CAS  Google Scholar 

  4. Howe LR, Dannenberg AJ (2002) A role for cyclooxygenase-2 inhibitors in the prevention and treatment of cancer. Semin Oncol 29:111–119

    PubMed  CAS  Google Scholar 

  5. Gupta RA, Dubois RN (1998) Aspirin, NSAIDS, and colon cancer prevention: mechanisms? Gastroenterology 114:1095–1098

    Article  PubMed  CAS  Google Scholar 

  6. Smith ML, Hawcroft G, Hull MA (2000) The effect of non-steroidal anti-inflammatory drugs on human colorectal cancer cells: evidence of different mechanisms of action. Eur J Cancer 36:664–674

    Article  PubMed  CAS  Google Scholar 

  7. Tegeder I, Pfeilschifter J, Geisslinger G (2001) Cyclooxygenase-independent actions of cyclooxygenase inhibitors. FASEB J 15:2057–2072

    Article  PubMed  CAS  Google Scholar 

  8. Singh R, Cadeddu RP, Fröbel J, Wilk CM, Bruns I, Zerbini LF, Prenzel T, Hartwig S, Brunnert D, Schroeder T, Lehr S, Haas R, Czibere A (2011) The non-steroidal anti-inflammatory drugs Sulindac sulfide and Diclofenac induce apoptosis and differentiation in human acute myeloid leukemia cells through an AP-1 dependent pathway. Apoptosis 16:889–901

    Article  PubMed  CAS  Google Scholar 

  9. Mayorek N, Naftali-Shani N, Grunewald M (2010) Diclofenac inhibits tumor growth in a murine model of pancreatic cancer by modulation of VEGF levels and arginase activity. PLoS ONE 5(9):e12715

    Article  PubMed  Google Scholar 

  10. Xia JJ, Pei LB, Zhuang JP, Ji Y, Xu GP, Zhang ZP, Li N, Yan JL (2010) Celecoxib inhibits β-catenin-dependent survival of the human osteosarcoma MG-63 cell line. J Int Med Res 38:1294–1304

    Article  PubMed  CAS  Google Scholar 

  11. McDonald SL, Silver AR (2011) On target? Strategies and progress in the development of therapies for colorectal cancer targeted against WNT signalling. Colorectal Dis 13:360–369

    Article  PubMed  CAS  Google Scholar 

  12. Dihlmann S, Siermann A, von Knebel Doeberitz M (2001) The nonsteroidal anti-inflammatory drugs aspirin and indomethacin attenuate β-catenin/Tcf4 signaling. Oncogene 20:645–653

    Article  PubMed  CAS  Google Scholar 

  13. Gardner SH, Hawcroft G, Hull MA (2004) Effect of nonsteroidal anti-inflammatory drugs on β-catenin protein levels and catenin-related transcription in human colorectal cancer cells. Br J Cancer 91:153–163

    Article  PubMed  CAS  Google Scholar 

  14. Bos CL, Kodach LL, van den Brink GR, Diks SH, van Santen MM, Richel DJ, Peppelenbosch MP, Hardwick JCH (2006) Effect of aspirin on the Wnt/beta-catenin pathway is mediated via protein phosphatase 2A. Oncogene 25:6447–6456

    Article  PubMed  CAS  Google Scholar 

  15. Boon EMJ, Keller JJ, Wormhoudt TAM, Giardiello FM, Offerhaus GJA, van der Neut R, Pals ST (2004) Sulindac targets nuclear beta-catenin accumulation and Wnt signaling in adenomas of patients with familial adenomatous polyposis and in human colorectal cancer cell lines. Br J Cancer 90:224–229

    Article  PubMed  CAS  Google Scholar 

  16. Yao H, Ashihara E, Maekawa T (2011) Targeting the Wnt/β-catenin signaling pathway in human cancers. Expert Opin Ther Targets 15:873–887

    Article  PubMed  CAS  Google Scholar 

  17. Saito-Diaz K, Chen TW, Wang X, Thorne CA, Wallace HA, Page-McCaw A, Lee E (2013) The way Wnt works: components and mechanism. Growth Factors 31:1–31

    Article  PubMed  CAS  Google Scholar 

  18. Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, Henkelman RM, Cusimano MD, Dirks PB (2004) Identification of human brain tumour initiating cells. Nature 432:396–401

    Article  PubMed  CAS  Google Scholar 

  19. Ohgaki H, Kleihues P (2009) Genetic alterations and signaling pathways in the evolution of gliomas. Cancer Sci 100:2235–2241

    Article  PubMed  CAS  Google Scholar 

  20. Sareddy GR, Panigrahi M, Challa S, Mahadevan A, Babu PP (2009a) Activation of Wnt/beta-catenin/Tcf signaling pathway in human astrocytomas. Neurochem Int 55:307–317

    Google Scholar 

  21. Sareddy GR, Geeviman K, Panigrahi M, Challa S, Mahadevan A, Babu PP (2012) Increased β-catenin/Tcf signaling in pilocytic astrocytomas: a comparative study to distinguish pilocytic astrocytomas from low-grade diffuse astrocytomas. Neurochem Res 37:96–104

    Article  PubMed  CAS  Google Scholar 

  22. Sareddy GR, Challa S, Panigrahi M, Babu PP (2009) Wnt/beta-catenin/Tcf signaling pathway activation in malignant progression of rat gliomas induced by transplacental N-ethyl-N-nitrosourea exposure. Neurochem Res 34:1278–1288

    Article  PubMed  CAS  Google Scholar 

  23. Pu P, Zhang Z, Kang C, Jiang R, Jia Z, Wang G, Jiang H (2009) Downregulation of Wnt2 and beta-catenin by siRNA suppresses malignant glioma cell growth. Cancer Gene Ther 16:351–361

    Article  PubMed  CAS  Google Scholar 

  24. Sareddy GR, Nair BC, Gonugunta VK, Zhang QG, Brenner A, Brann DW, Tekmal RR, Vadlamudi RK (2012) Therapeutic significance of estrogen receptor β agonists in gliomas. Mol Cancer Ther 11:1174–1182

    Article  PubMed  CAS  Google Scholar 

  25. Kesanakurti D, Sareddy GR, Babu PP, Kirti PB (2009) Mustard NPR1, a mammalian IkappaB homologue inhibits NF-kappaB activation in human GBM cell lines. Biochem Biophys Res Commun 390:427–433

    Article  PubMed  CAS  Google Scholar 

  26. Dihlmann S, Klein S, Doeberitz Mv MK (2003) Reduction of beta-catenin/T-cell transcription factor signaling by aspirin and indomethacin is caused by an increased stabilization of phosphorylated beta-catenin. Mol Cancer Ther 2:509–516

    PubMed  CAS  Google Scholar 

  27. Rothwell PM, Fowkes FG, Belch JF, Ogawa H, Warlow CP, Meade TW (2011) Effect of daily aspirin on long-term risk of death due to cancer: analysis of individual patient data from randomised trials. Lancet 377:31–41

    Article  PubMed  CAS  Google Scholar 

  28. Wu CY, Wu MS, Kuo KN, Wang CB, Chen YJ, Lin JT (2010) Effective reduction of gastric cancer risk with regular use of nonsteroidal anti-inflammatory drugs in Helicobacter pylori-infected patients. J Clin Oncol 28:2952–2957

    Article  PubMed  CAS  Google Scholar 

  29. Ferris JS, McCoy L, Neugut AI, Wrensch M, Lai R (2012) HMG CoA reductase inhibitors, NSAIDs and risk of glioma. Int J Cancer 131:E1031–E1037

    Article  PubMed  CAS  Google Scholar 

  30. Scheurer ME, El-Zein R, Thompson PA, Aldape KD, Levin VA, Gilbert MR, Weinberg JS, Bondy ML (2008) Long-term anti-inflammatory and antihistamine medication use and adult glioma risk. Cancer Epidemiol Biomarkers Prev 17:1277–1281

    Article  PubMed  CAS  Google Scholar 

  31. Sivak-Sears NR, Schwartzbaum JA, Miike R, Moghadassi M, Wrensch M (2004) Case-control study of use of nonsteroidal anti-inflammatory drugs and glioblastoma multiforme. Am J Epidemiol 159:1131–1139

    Article  PubMed  Google Scholar 

  32. Van Hecken A, Schwartz JI, Depre M, De Lepeleire I, Dallob A, Tanaka W, Wynants K, Buntinx A, Arnout J, Wong PH, Ebel DL, Gertz BJ, De Schepper PJ (2000) Comparative inhibitory activity of rofecoxib, meloxicam, diclofenac, ibuprofen, and naproxen on COX-2 versus COX-1 in healthy volunteers. J Clin Pharmacol 40:1109–1120

    PubMed  Google Scholar 

  33. Johannesdottir SA, Chang ET, Mehnert F, Schmidt M, Olesen AB, Sørensen HT (2012) Nonsteroidal anti-inflammatory drugs and the risk of skin cancer: a population-based case-control study. Cancer 118:4768–4776

    Article  PubMed  CAS  Google Scholar 

  34. Chirasani SR, Leukel P, Gottfried E, Hochrein J, Stadler K, Neumann B, Oefner PJ, Gronwald W, Bogdahn U, Hau P, Kreutz M, Grauer OM (2013) Diclofenac inhibits lactate formation and efficiently counteracts local immune suppression in a murine glioma model. Int J Cancer 132:843–853

    Article  PubMed  CAS  Google Scholar 

  35. Zerbini LF, Tamura RE, Correa RG, Czibere A, Cordeiro J, Bhasin M, Simabuco FM, Wang Y, Gu X, Li L, Sarkar D, Zhou JR, Fisher PB, Libermann TA (2011) Combinatorial effect of non-steroidal anti-inflammatory drugs and NF-κB inhibitors in ovarian cancer therapy. PLoS ONE 6:e24285

    Article  PubMed  CAS  Google Scholar 

  36. Ma HI, Chiou SH, Hueng DY, Tai LK, Huang PI, Kao CL, Chen YW, Sytwu HK (2011) Celecoxib and radioresistant glioblastoma-derived CD133 + cells: improvement in radiotherapeutic effects. Laboratory investigation. J Neurosurg 114:651–662

    Article  PubMed  CAS  Google Scholar 

  37. Grosch S, Maier TJ, Schiffmann S, Geisslinger G (2006) Cyclooxygenase-2 (COX-2)-independent anticarcinogenic effects of selective COX-2 inhibitors. J Natl Cancer Inst 98:736–747

    Article  PubMed  Google Scholar 

  38. Crane CH, Mason K, Janjan NA, Milas L (2003) Initial experience combining cyclooxygenase-2 inhibition with chemoradiation for locally advanced pancreatic cancer. Am J Clin Oncol 26:S81–S84

    Article  PubMed  Google Scholar 

  39. Kardosh A, Golden EB, Pyrko P, Uddin J, Hofman FM, Chen TC, Louie SG, Petasis NA, Schonthal AH (2008) Aggravated endoplasmic reticulum stress as a basis for enhanced glioblastoma by bortezomib in combination with celecoxib or its non-coxib analogue, 2, 5-dimethyl-celecoxib. Cancer Res 68:843–851

    Article  PubMed  CAS  Google Scholar 

  40. Kang SG, Kim JS, Park K, Kim JS, Groves MD, Nam DH (2006) Combination celecoxib and temozolomide in C6 rat glioma orthotopic model. Oncol Rep 15:7–13

    PubMed  CAS  Google Scholar 

  41. Kim CK, Joe YA, Lee SK, Kim EKOE, Kim HK, Oh BJ, Hong SH, Hong YK (2010) Enhancement of anti-tumor activity by low dose combination of the recombinant urokinase kringle domain and celecoxib in a glioma model. Cancer Lett 288:251–260

    Article  PubMed  CAS  Google Scholar 

  42. Grossman SA, Oslon J, Batchelor T, Peereboom D, Lesser G, Desideri S, Ye X, Hammour T, Supko JG (2008) Effect of phenytoin on celecoxib pharmacokinetics in patients with glioblastoma. Neuro Oncol 10:190–198

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support of CSIR (for providing fellowship to GRS), DBT, ICMR, DST, Government of India, New Delhi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phanithi Prakash Babu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sareddy, G.R., Kesanakurti, D., Kirti, P.B. et al. Nonsteroidal Anti-inflammatory Drugs Diclofenac and Celecoxib Attenuates Wnt/β-Catenin/Tcf Signaling Pathway in Human Glioblastoma Cells. Neurochem Res 38, 2313–2322 (2013). https://doi.org/10.1007/s11064-013-1142-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-013-1142-9

Keywords

Navigation