Skip to main content
Log in

Intertissue Differences for the Role of Glutamate Dehydrogenase in Metabolism

  • Overview
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The enzyme glutamate dehydrogenase (GDH) plays an important role in integrating mitochondrial metabolism of amino acids and ammonia. Glutamate may function as a respiratory substrate in the oxidative deamination direction of GDH, which also yields α-ketoglutarate. In the reductive amination direction GDH produces glutamate, which can then be used for other cellular needs such as amino acid synthesis via transamination. The production or removal of ammonia by GDH is also an important consequence of flux through this enzyme. However, the abundance and role of GDH in cellular metabolism varies by tissue. Here we discuss the different roles the house-keeping form of GDH has in major organs of the body and how GDH may be important to regulating aspects of intermediary metabolism. The near-equilibrium poise of GDH in liver and controversy over cofactor specificity and regulation is discussed, as well as, the role of GDH in regulation of renal ammoniagenesis, and the possible importance of GDH activity in the release of nitrogen carriers by the small intestine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Spanaki C, Plaitakis A (2012) The role of glutamate dehydrogenase in mammalian ammonia metabolism. Neurotox Res 21:117–127

    CAS  PubMed  Google Scholar 

  2. Zaganas I, Kanavouras K, Mastorodemos V, Latsoudis H, Spanaki C, Plaitakis A (2009) The human GLUD2 glutamate dehydrogenase: localization and functional aspects. Neurochem Int 55:52–63

    CAS  PubMed  Google Scholar 

  3. Zaganas I, Spanaki C, Plaitakis A (2012) Expression of human GLUD2 glutamate dehydrogenase in human tissues: functional implications. Neurochem Int 61:455–462

    CAS  PubMed  Google Scholar 

  4. Wk Lee, Shin S, Cho SS, Park JS (2000) Purification and characterization of glutamate dehydrogenase as another isoprotein binding to the membrane of rough endoplasmic reticulum. J Cell Biochem 76:244–253

    Google Scholar 

  5. Mastorodemos V, Kotzamani D, Zaganas I, Arianoglou G, Latsoudis H, Plaitakis A (2009) Human GLUD1 and GLUD2 glutamate dehydrogenase localize to mitochondria and endoplasmic reticulum. Biochem Cell Biol 87:505–516

    CAS  PubMed  Google Scholar 

  6. Lai JC, Sheu KF, Kim YT, Clarke DD, Blass JP (1986) The subcellular localization of glutamate dehydrogenase (GDH): is GDH a marker for mitochondria in brain? Neurochem Res 11:733–744

    CAS  PubMed  Google Scholar 

  7. Male KB, Storey KB (1982) Regulation of coenzyme utilization by bovine liver glutamate dehydrogenase: investigations using thionicotinamide analogues of NAD and NADP in a dual wavelength assay. Int J Biochem 14:1083–1089

    CAS  PubMed  Google Scholar 

  8. Peterson PE, Smith TJ (1999) The structure of bovine glutamate dehydrogenase provides insights into the mechanism of allostery. Structure 7:769–782

    CAS  PubMed  Google Scholar 

  9. Smith TJ, Peterson PE, Schmidt T, Fang J, Stanley CA (2001) Structures of bovine glutamate dehydrogenase complexes elucidate the mechanism of purine regulation. J Mol Biol 307:707–720

    CAS  PubMed  Google Scholar 

  10. Treberg J, Brosnan M, Brosnan J (2010) The simultaneous determination of NAD(H) and NADP(H) utilization by glutamate dehydrogenase. Mol Cell Biochem 344:253–259

    CAS  PubMed  Google Scholar 

  11. Treberg JR, Brosnan ME, Watford M, Brosnan JT (2010) On the reversibility of glutamate dehydrogenase and the source of hyperammonemia in the hyperinsulinism/hyperammonemia syndrome. Adv Enzym Reg 50:34–43

    Google Scholar 

  12. Bradford NM, McGivan JD (1973) Quantitative characteristics of glutamate transport in rat liver mitochondria. Biochem J 134:1023–1029

    CAS  PubMed  Google Scholar 

  13. Brand MD, Chappell JB (1974) Glutamate and aspartate transport in rat brain mitochondria. Biochem J 140:205–210

    CAS  PubMed  Google Scholar 

  14. LaNoue KF, Tischler ME (1974) Electrogenic characteristics of the mitochondrial glutamate-aspartate antiporter. J Biol Chem 249:7522–7528

    CAS  PubMed  Google Scholar 

  15. Meyer J, Vignais PM (1973) Kinetic study of glutamate transport in rat liver mitochondria. Biochim Biophys Acta 325:375–384

    CAS  PubMed  Google Scholar 

  16. Schoolwerth AC, LaNoue KF, Hoover WJ (1983) Glutamate transport in rat kidney mitochondria. J Biol Chem 258:1735–1739

    CAS  PubMed  Google Scholar 

  17. Curthoys NP, Watford M (1995) Regulation of glutaminase activity and glutamine metabolism. Annu Rev Nutr 15:133–159

    CAS  PubMed  Google Scholar 

  18. Curthoys NP, Weiss RF (1974) Regulation of Renal ammoniagenesis: subcellular localization of rat kidney glutaminase isoenzymes. J Biol Chem 249:3261–3266

    CAS  PubMed  Google Scholar 

  19. Kvamme E, Torgner IA, Roberg B (1991) Evidence indicating that pig renal phosphate-activated glutaminase has a functionally predominant external localization in the inner mitochondrial membrane. J Biol Chem 266:13185–13192

    CAS  PubMed  Google Scholar 

  20. Roberg B, Torgner IA, Laake J, Takumi Y, Ottersen OP, Kvamme E (2000) Properties and submitochondrial localization of pig and rat renal phosphate-activated glutaminase. Am J Physiol 279:C648–C657

    CAS  Google Scholar 

  21. Goldstein L, Boylan JM (1978) Renal mitochondrial glutamine transport and metabolism: studies with a rapid-mixing, rapid-filtration technique. Am J Physiol 234:F514–F521

    CAS  PubMed  Google Scholar 

  22. Soboll S, Lenzen C, Rettich D, Gründel S, Ziegler B (1991) Characterisation of glutamine uptake in rat liver mitochondria. Eur J Biochem 197:113–117

    CAS  PubMed  Google Scholar 

  23. LaNoue KF, Schoolwerth AC (1979) Metabolite transport in mitochondria. Annu Rev Biochem 48:871–922

    CAS  PubMed  Google Scholar 

  24. Litman T, Sögaard R, Zeuthen T (2009) Ammonia and urea permeability of mammalian aquaporins. Aquaporins. 190:327–358

    CAS  Google Scholar 

  25. Yang B, Zhao D, Solenov E, Verkman AS (2006) Evidence from knockout mice against physiologically significant aquaporin 8-facilitated ammonia transport. Am J Physiol 291:C417–C423

    CAS  Google Scholar 

  26. Karaca M, Frigerio F, Maechler P (2011) From pancreatic islets to central nervous system, the importance of glutamate dehydrogenase for the control of energy homeostasis. Neurochem Int 59:510–517

    CAS  PubMed  Google Scholar 

  27. Williamson DH, Lund P, Krebs HA (1967) The redox state of free nicotinamide-adenine dinucleotide in the cytoplasm and mitochondria of rat liver. Biochem J 103:514–527

    CAS  PubMed  Google Scholar 

  28. Aoki C, Milner TA, Sheu KF, Blass JP, Pickel VM (1987) Regional distribution of astrocytes with intense immunoreactivity for glutamate dehydrogenase in rat brain: implications for neuron-glia interactions in glutamate transmission. J Neurosci 7:2214–2231

    CAS  PubMed  Google Scholar 

  29. McKenna MC, Stevenson JH, Huang X, Hopkins IB (2000) Differential distribution of the enzymes glutamate dehydrogenase and aspartate aminotransferase in cortical synaptic mitochondria contributes to metabolic compartmentation in cortical synaptic terminals. Neurochem Int 37:229–241

    CAS  PubMed  Google Scholar 

  30. Zaganas I, Waagepetersen HS, Georgopoulos P, Sonnewald U, Plaitakis A, Schousboe A (2001) Differential expression of glutamate dehydrogenase in cultured neurons and astrocytes from mouse cerebellum and cerebral cortex. J Neurosci Res 66:909–913

    CAS  PubMed  Google Scholar 

  31. McKenna MC (2011) Glutamate dehydrogenase in brain mitochondria: do lipid modifications and transient metabolon formation influence enzyme activity? Neurochem Int 59:525–533

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Plaitakis A, Zaganas I (2001) Regulation of human glutamate dehydrogenases: implications for glutamate, ammonia and energy metabolism in brain. J Neurosci Res 66:899–908

    CAS  PubMed  Google Scholar 

  33. Plaitakis A, Latsoudis H, Spanaki C (2011) The human GLUD2 glutamate dehydrogenase and its regulation in health and disease. Neurochem Int 59:495–509

    CAS  PubMed  Google Scholar 

  34. Kelly A, Stanley CA (2001) Disorders of glutamate metabolism. Ment Retard Dev Disabil Res Rev 7:287–295

    CAS  PubMed  Google Scholar 

  35. Kelly A, Ng D, Ferry RJ Jr, Grimberg A, Koo-McCoy S, Thornton PS, Stanley CA (2001) Acute insulin responses to leucine in children with the hyperinsulinism/hyperammonemia syndrome. J Clin Endocrinol Metab 86:3724–3728

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Palladino A, Stanley C (2010) The hyperinsulinism/hyperammonemia syndrome. Rev Endocr Metab Dis 11:171–178

    CAS  Google Scholar 

  37. Stanley CA (2004) Hyperinsulinism/hyperammonemia syndrome: insights into the regulatory role of glutamate dehydrogenase in ammonia metabolism. Mol Genet Metab 81(Suppl 1):S45–S51

    CAS  PubMed  Google Scholar 

  38. Cooper AJ, Nieves E, Coleman AE, Filc-DeRicco S, Gelbard AS (1987) Short-term metabolic fate of [13N]ammonia in rat liver in vivo. J Biol Chem 262:1073–1080

    CAS  PubMed  Google Scholar 

  39. Cooper AJ, Nieves E, Rosenspire KC, Filc-DeRicco S, Gelbard AS, Brusilow SW (1988) Short-term metabolic fate of 13N-labeled glutamate, alanine, and glutamine(amide) in rat liver. J Biol Chem 263:12268–12273

    CAS  PubMed  Google Scholar 

  40. Brosnan JT, Krebs HA, Williamson DH (1970) Effects of ischaemia on metabolite concentrations in rat liver. Biochem J 117:91–96

    CAS  PubMed  Google Scholar 

  41. Tischler ME, Friedrichs D, Coll K, Williamson JR (1977) Pyridine nucleotide distributions and enzyme mass action ratios in hepatocytes from fed and starved rats. Arch Biochem Biophys 184:222–236

    CAS  PubMed  Google Scholar 

  42. Hoek JB, Ernster L, De Haan EJ, Tager JM (1974) The nicotinamide nucleotide specificity of glutamate dehydrogenase in intact rat-liver mitochondria. Biochim Biophys Acta Bioenergetics 333:546–559

    CAS  Google Scholar 

  43. Papa S, Tager JM, Francavilla A, De Haan EJ, Quagliariello E (1967) Control of glutamate dehydrogenase activity during glutamate oxidation in isolated rat-liver mitochondria. Biochim Biophys Acta Bioenergetics 131:14–28

    CAS  Google Scholar 

  44. Hoek JB, Rydström J (1988) Physiological roles of nicotinamide nucleotide transhydrogenase. Biochem J 254:1–10

    CAS  PubMed  Google Scholar 

  45. Pedersen A, Karlsson G, Rydström J (2008) Proton-translocating transhydrogenase: an update of unsolved and controversial issues. J Bioenerg Biomem 40:463–473

    CAS  Google Scholar 

  46. Popova SV, Reich JG (1983) Theoretical analysis of the glutamate dehydrogenase kinetics under physiological conditions. Biomed Biochim Acta 42:27–36

    CAS  PubMed  Google Scholar 

  47. Wanders RJA, Van Doorn HE, Tager JM (1981) The energy-linked transhydrogenase in rat liver in relation to the reductive carboxylation of 2-oxoglutarate. Eur J Biochem 116:609–614

    CAS  PubMed  Google Scholar 

  48. MacMullen C, Fang J, Hsu BY, Kelly A, Lonlay-Debeney P, Saudubray JM, Ganguly A, Smith TJ, Stanley CA (2001) Hyperinsulinism/hyperammonemia syndrome in children with regulatory mutations in the inhibitory guanosine triphosphate-binding domain of glutamate dehydrogenase. J Clin Endocrinol Metab 86:1782–1787

    CAS  PubMed  Google Scholar 

  49. Stanley CA, Fang J, Kutyna K, Hsu BY, Ming JE, Glaser B, Poncz M (2000) Molecular basis and characterization of the hyperinsulinism/hyperammonemia syndrome: predominance of mutations in exons 11 and 12 of the glutamate dehydrogenase gene. HI/HA contributing investigators. Diabetes 49:667–673

    CAS  PubMed  Google Scholar 

  50. De Lonlay P, Benelli C, Fouque F, Ganguly A, Aral B, Dionisi-Vici C, Touati G, Heinrichs C, Rabier D, Kamoun P, Robert JJ, Stanley C, Saudubray JM (2001) Hyperinsulinism and hyperammonemia syndrome: report of twelve unrelated patients. Pediatr Res 50:353–357

    PubMed  Google Scholar 

  51. Treberg JR, Clow KA, Greene KA, Brosnan ME, Brosnan JT (2010) Systemic activation of glutamate dehydrogenase increases renal ammoniagenesis: implications for the hyperinsulinism/hyperammonemia syndrome. Am J Physiol 298:E1219–E1225

    CAS  Google Scholar 

  52. Veech RL, Raijman L, Krebs HA (1970) Equilibrium relations between the cytoplasmic adenine nucleotide system and nicotinamide-adenine nucleotide system in rat liver. Biochem J 117:499–503

    CAS  PubMed  Google Scholar 

  53. Wanders RJA, Hoek JB, Tager JM (1980) Origin of the ammonia found in protein-free extracts of rat-liver mitochondria and rat hepatocytes. Eur J Biochem 110:197–202

    CAS  PubMed  Google Scholar 

  54. Brown GC, Brand MD (1988) Proton/electron stoichiometry of mitochondrial complex I estimated from the equilibrium thermodynamic force ratio. Biochem J 252:473–479

    CAS  PubMed  Google Scholar 

  55. Hafner RP, Nobes CD, McGown AD, Brand MD (1988) Altered relationship between protonmotive force and respiration rate in non-phosphorylating liver mitochondria isolated from rats of different thyroid hormone status. Eur J Biochem 178:511–518

    CAS  PubMed  Google Scholar 

  56. Hoek JB, Nicholls DG, Williamson JR (1980) Determination of the mitochondrial protonmotive force in isolated hepatocytes. J Biol Chem 255:1458–1464

    CAS  PubMed  Google Scholar 

  57. Yamaguchi M, Hatefi Y (1995) Proton-translocating nicotinamide nucleotide transhydrogenase: reconstitution of the extramembranous nucleotide-binding domains. J Biol Chem 270:28165–28168

    CAS  PubMed  Google Scholar 

  58. Brosnan ME, Brosnan JT (2009) Hepatic glutamate metabolism: a tale of 2 hepatocytes. Am J Clin Nutr 90:857S–861S

    CAS  PubMed  Google Scholar 

  59. Häussinger D (1990) Nitrogen metabolism in liver: structural and functional organization and physiological relevance. Biochem J 267:281–290

    PubMed  Google Scholar 

  60. Katz NR (1992) Metabolic heterogeneity of hepatocytes across the liver acinus. J Nutr 122:843–849

    CAS  PubMed  Google Scholar 

  61. Häussinger D (1986) Regulation of hepatic ammonia metabolism: the intercellular glutamine cycle. Adv Enz Reg 25:159–180

    Google Scholar 

  62. Maly IP, Sasse D (1991) Microquantitative analysis of the intra-acinar profiles of glutamate dehydrogenase in rat liver. J Histochem Cytochem 39:1121–1124

    CAS  PubMed  Google Scholar 

  63. Sokal EM, Trivedi P, Portmann B, Mowat AP (1989) Developmental changes in the intra-acinar distribution of succinate dehydrogenase, glutamate dehydrogenase, glucose-6-phosphatase, and NADPH dehydrogenase in the rat liver. J Pediatr Gastroenterol Nutr 8:522–527

    CAS  PubMed  Google Scholar 

  64. Sokal EM, Trivedi P, Cheeseman P, Portmann B, Mowat AP (1989) The application of quantitative cytochemistry to study the acinar distribution of enzymatic activities in human liver biopsy sections. J Hepatol 9:42–48

    CAS  PubMed  Google Scholar 

  65. Fine A, Bennett FI, Alleyne GA (1978) Effects of acute acid–base alterations on glutamine metabolism and renal ammoniagenesis in the dog. Clin Sci Mol Med 54:503–508

    CAS  PubMed  Google Scholar 

  66. Tizianello A, De Ferrari G, Garibotto G, Gurreri G, Robaudo C (1980) Renal metabolism of amino acids and ammonia in subjects with normal renal function and in patients with chronic renal insufficiency. J Clin Invest 65:1162–1173

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Weiner ID, Verlander JW (2011) Role of NH3 and NH4 + transporters in renal acid-base transport. Am J Physiol 300:F11–F23

    CAS  Google Scholar 

  68. Curthoys NP (2001) Role of mitochondrial glutaminase in rat renal glutamine metabolism. J Nutr 131:2491S–2495S

    CAS  PubMed  Google Scholar 

  69. Schoolwerth AC (1991) Regulation of renal ammoniagenesis in metabolic acidosis. Kidney Int 40:961–973

    CAS  PubMed  Google Scholar 

  70. Tannen RL, Sahai A (1990) Biochemical pathways and modulators of renal ammoniagenesis. Miner Electrolyte Metab 16:249–258

    CAS  PubMed  Google Scholar 

  71. Schoolwerth AC, Nazar BL, LaNoue KF (1978) Glutamate dehydrogenase activation and ammonia formation by rat kidney mitochondria. J Biol Chem 253:6177–6183

    CAS  PubMed  Google Scholar 

  72. Schoolwerth AC, Smith BC, Drewnowska K (1992) Regulation of glutamine metabolism in dog kidney cortex: effect of pH and chronic acidosis. Am J Physiol 262:F1007–F1014

    CAS  PubMed  Google Scholar 

  73. Wright PA, Knepper MA (1990) Glutamate dehydrogenase activities in microdissected rat nephron segments: effects of acid-base loading. Am J Physiol 259:F53–F59

    CAS  PubMed  Google Scholar 

  74. Adam W, Simpson DP (1974) Glutamine transport in rat kidney mitochondria in metabolic acidosis. J Clin Invest 54:165–174

    CAS  PubMed Central  PubMed  Google Scholar 

  75. Wright PA, Packer RK, Garcia-Perez A, Knepper MA (1992) Time course of renal glutamate dehydrogenase induction during NH4Cl loading in rats. Am J Physiol 262:F999–F1006

    CAS  PubMed  Google Scholar 

  76. Shapiro RA, Morehouse RF, Curthoys NP (1982) Inhibition by glutamate of phosphate-dependent glutaminase of rat kidney. Biochem J 207:561–566

    CAS  PubMed  Google Scholar 

  77. Schroeder JM, Liu W, Curthoys NP (2003) pH-responsive stabilization of glutamate dehydrogenase mRNA in LLC-PK1-F+ cells. Am J Physiol 285:F258–F265

    CAS  Google Scholar 

  78. Lemieux G, Vinay P, Robitaille P, Plante GE, Lussier Y, Martin P (1971) The effect of ketone bodies on renal ammoniogenesis. J Clin Invest 50:1781–1791

    CAS  PubMed Central  PubMed  Google Scholar 

  79. Lemieux G, Pichette C, Vinay P, Gougoux A (1980) Cellular mechanisms of the antiammoniagenic effect of ketone bodies in the dog. Am J Physiol 239:F420–F426

    CAS  PubMed  Google Scholar 

  80. Gerich JE, Meyer C, Woerle HJ, Stumvoll M (2001) Renal gluconeogenesis: its importance in human glucose homeostasis. Diabetes Care 24:382–391

    CAS  PubMed  Google Scholar 

  81. Gerich JE (2010) Role of the kidney in normal glucose homeostasis and in the hyperglycaemia of diabetes mellitus: therapeutic implications. Diabet Med 27:136–142

    CAS  PubMed  Google Scholar 

  82. Landau BR, Wahren J, Chandramouli V, Schumann WC, Ekberg K, Kalhan SC (1996) Contributions of gluconeogenesis to glucose production in the fasted state. J Clin Invest 98:378–385

    CAS  PubMed Central  PubMed  Google Scholar 

  83. Stumvoll M, Meyer C, Mitrakou A, Nadkarni V, Gerich JE (1997) Renal glucose production and utilization: new aspects in humans. Diabetologia 40:749–757

    CAS  PubMed  Google Scholar 

  84. Stumvoll M, Meyer C, Perriello G, Kreider M, Welle S, Gerich J (1998) Human kidney and liver gluconeogenesis: evidence for organ substrate selectivity. Am J Physiol 274:E817–E826

    CAS  PubMed  Google Scholar 

  85. Stumvoll M, Perriello G, Meyer C, Gerich J (1999) Role of glutamine in human carbohydrate metabolism in kidney and other tissues. Kidney Int 55:778–792

    CAS  PubMed  Google Scholar 

  86. Fleming SE, Zambell KL, Fitch MD (1997) Glucose and glutamine provide similar proportions of energy to mucosal cells of rat small intestine. Am J Physiol 273:G968–G978

    CAS  PubMed  Google Scholar 

  87. Blachier F, Boutry C, Bos C, Tomé D (2009) Metabolism and functions of l-glutamate in the epithelial cells of the small and large intestines. Am J Clin Nutr 90:814S–821S

    CAS  PubMed  Google Scholar 

  88. Windmueller HG, Spaeth AE (1975) Intestinal metabolism of glutamine and glutamate from the lumen as compared to glutamine from blood. Arch Biochem Biophys 171:662–672

    CAS  PubMed  Google Scholar 

  89. Windmueller HG, Spaeth AE (1980) Respiratory fuels and nitrogen metabolism in vivo in small intestine of fed rats. Quantitative importance of glutamine, glutamate, and aspartate. J Biol Chem 255:107–112

    CAS  PubMed  Google Scholar 

  90. Windmueller HG, Spaeth AE (25-8-1974) Uptake and metabolism of plasma glutamine by the small intestine. J Biol Chem 249:5070–5079

  91. Jungas RL, Halperin ML, Brosnan JT (1992) Quantitative analysis of amino acid oxidation and related gluconeogenesis in humans. Physiol Rev 72:419–448

    CAS  PubMed  Google Scholar 

  92. Burrin DG, Stoll B (2009) Metabolic fate and function of dietary glutamate in the gut. Am J Clin Nutr 90:850S–856S

    CAS  PubMed  Google Scholar 

  93. Johnson AW, Berrington JM, Walker I, Manning A, Losowsky MS (1988) Measurement of the transfer of the nitrogen moiety of intestinal lumen glutamic acid in man after oral ingestion of l-[15N]glutamic acid. Clin Sci (Lond) 75:499–502

    CAS  Google Scholar 

  94. Kimura RE (1987) Glutamine oxidation by developing rat small intestine. Pediatr Res 21:214–217

    CAS  PubMed  Google Scholar 

  95. Pinkus LM, Windmueller HG (1977) Phosphate-dependent glutaminase of small intestine: localization and role in intestinal glutamine metabolism. Arch Biochem Biophys 182:506–517

    CAS  PubMed  Google Scholar 

  96. Khungar V, Poordad F (2012) Hepatic encephalopathy. Clin Liver Dis 16:301–320

    PubMed  Google Scholar 

  97. Rama Rao KV, Norenberg MD (2012) Brain energy metabolism and mitochondrial dysfunction in acute and chronic hepatic encephalopathy. Neurochem Int 60:697–706

    CAS  PubMed  Google Scholar 

  98. Wright G, Noiret L, Olde Damink SWM, Jalan R (2011) Interorgan ammonia metabolism in liver failure: the basis of current and future therapies. Liver Int 31:163–175

    CAS  PubMed  Google Scholar 

  99. LaNoue KF, Walajtys EI, Williamson JR (1973) Regulation of glutamate metabolism and interactions with the citric acid cycle in rat heart mitochondria. J Biol Chem 248:7171–7183

    CAS  PubMed  Google Scholar 

  100. Nelson D, Rumsey WL, Erecińska M (1992) Glutamine catabolism by heart muscle. Properties of phosphate-activated glutaminase. Biochem J 282:559–564

    CAS  PubMed  Google Scholar 

  101. Takala T, Hiltunen JK, Hassinen IE (1980) The mechanism of ammonia production and the effect of mechanical work load on proteolysis and amino acid catabolism in isolated perfused rat heart. Biochem J 192:285–295

    CAS  PubMed  Google Scholar 

  102. Cohen DM, Guthrie PH, Gao X, Sakai R, Taegtmeyer H (2003) Glutamine cycling in isolated working rat heart. Am J Physiol 285:E1312–E1316

    CAS  Google Scholar 

  103. Katz A, Spencer MK, Sahlin K (1990) Failure of glutamate dehydrogenase system to predict oxygenation state of human skeletal muscle. Am J Physiol 259:C26–C28

    CAS  PubMed  Google Scholar 

  104. Brosnan JT (2000) Glutamate, at the interface between amino acid and carbohydrate metabolism. J Nutr 130:988S–990S

    CAS  PubMed  Google Scholar 

  105. Treberg JR, Quinlan CL, Brand MD (2010) Hydrogen peroxide efflux from muscle mitochondria underestimates matrix superoxide production-a correction using glutathione depletion. FEBS J 277:2766–2778

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by a Discovery Grant (JRT) from the Natural Sciences and Engineering Research Council (NSERC) of Canada and the Canada Research Chairs (CRC) program. JRT is the Canada Research Chair in Environmental Dynamics and Metabolism (NSERC tier II). Research by DW is funded by a NSERC Discovery Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason R. Treberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Treberg, J.R., Banh, S., Pandey, U. et al. Intertissue Differences for the Role of Glutamate Dehydrogenase in Metabolism. Neurochem Res 39, 516–526 (2014). https://doi.org/10.1007/s11064-013-0998-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-013-0998-z

Keywords

Navigation