Skip to main content
Log in

Ganglioside GM1/Galectin-Dependent Growth Regulation in Human Neuroblastoma Cells: Special Properties of Bivalent Galectin-4 and Significance of Linker Length for Ligand Selection

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Orchestrated upregulation of cell surface presentation of ganglioside GM1 and homodimeric galectin-1 is the molecular basis for growth regulation of human neuroblastoma (SK-N-MC) cells. Further study led to the discovery of competitive inhibition by galectin-3, prompting us to test tandem-repeat-type galectin-4 (two different lectin domains connected by a 42-amino-acid linker). This lectin bound to cells at comparably high affinity without involvement of the ganglioside, as disclosed by assays in the presence of cholera toxin B-subunit or galectin-1 and blocking glucosylceramide synthesis. Notably, when tested separately, binding of both lectin domains showed partial sensitivity to the bacterial agglutinin. Despite its ability for cross-linking surface association of galectin-4 did not affect proliferation, in contrast to homodimeric galectins. The truncation of linker length from 42 to 16 amino acids altered binding properties to let partial sensitivity to the bacterial lectin emerge. Cross-competition between parental and engineered proteins did not exceed 40%. No effect on cell growth was detected. This study reveals complete functional divergence between galectins differing in the spatial mode of lectin-site presentation and dependence of reactivity to distinct counter-receptor(s) on linker length. Due to the documented presence of galectin-4 in the nervous system and its affinity for sulfatide these in vitro results indicate the potential for a distinct functionality profile of this lectin in vivo, giving further research direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Gabius HJ (ed) (2009) The sugar code. Fundamentals of glycosciences. Wiley-VCH, Weinheim

    Google Scholar 

  2. Spicer SS, Schulte BA (1992) Diversity of cell glycoconjugates shown histochemically: a perspective. J Histochem Cytochem 40:1–38

    Article  PubMed  CAS  Google Scholar 

  3. Danguy A, Akif F, Pajak B, Gabius HJ (1994) Contribution of carbohydrate histochemistry to glycobiology. Histol Histopathol 9:155–171

    PubMed  CAS  Google Scholar 

  4. Patsos G, André S, Roeckel N, Gromes R, Gebert J, Kopitz J, Gabius HJ (2009) Compensation of loss of protein function in microsatellite-unstable colon cancer cells (HCT116): a gene-dependent effect on the cell surface glycan profile. Glycobiology 19:726–734

    Article  PubMed  CAS  Google Scholar 

  5. Roth J (2011) Lectins for histochemcial demonstration of glycans. Histochem Cell Biol 136:117–130

    Article  PubMed  CAS  Google Scholar 

  6. Gabius HJ, André S, Jiménez-Barbero J, Romero A, Solís D (2011) From lectin structure to functional glycomics: principles of the sugar code. Trends Biochem Sci 36:298–313

    Article  PubMed  CAS  Google Scholar 

  7. Jessell TM, Hynes MA, Dodd J (1990) Carbohydrates and carbohydrate-binding proteins in the nervous system. Annu Rev Neurosci 13:227–255

    Article  PubMed  CAS  Google Scholar 

  8. Gabius HJ, Kohnke B, Hellmann T, Dimitri T, Bardosi A (1988) Comparative histochemical and biochemical analysis of endogenous receptors for glycoproteins in human and pig peripheral nerve. J Neurochem 51:756–763

    Article  PubMed  CAS  Google Scholar 

  9. Bardosi A, Bardosi L, Lindenblatt R, Gabius HJ (1990) Detection and mapping of endogenous receptors for carrier-immobilized constituents of glycoconjugates (lectins) by labelled (neo)glycoproteins and by affinity chromatography in human adult mesencephalon, pons, medulla oblongata and cerebellum. Histochemistry 94:285–291

    Article  PubMed  CAS  Google Scholar 

  10. Gabius HJ, Bardosi A (1990) Regional differences in the distribution of endogenous receptors for carbohydrate constituents of cellular glycoconjugates, especially lectins, in cortex, hippocampus, basal ganglia and thalamus of adult human brain. Histochemistry 93:581–592

    Article  PubMed  CAS  Google Scholar 

  11. Kuchler S, Zanetta JP, Vincendon G, Gabius HJ (1990) Detection of binding sites for biotinylated neoglycoproteins and heparin (endogenous lectins) during cerebellar ontogenesis in the rat. Eur J Cell Biol 52:87–97

    PubMed  CAS  Google Scholar 

  12. Caron M, Joubert R, Bladier D (1987) Purification and characterization of a β-galactoside-binding soluble lectin from rat and bovine brain. Biochim Biophys Acta 925:290–296

    Article  PubMed  CAS  Google Scholar 

  13. Joubert R, Kuchler S, Zanetta JP, Bladier D, Avellana-Adalid V, Caron M, Doinel C, Vincendon G (1989) Immunohistochemical localization of a β-galactoside-binding lectin in rat central nervous system. I. Light- and electron-microscopical studies on developing cerebral cortex and corpus callosum. Dev Neurosci 11:397–413

    Article  PubMed  CAS  Google Scholar 

  14. Kuchler S, Joubert R, Avellana-Adalid V, Caron M, Bladier D, Vincendon G, Zanetta JP (1989) Immunohistochemical localization of a β-galactoside-binding lectin in rat central nervous system. II. Light- and electron-microscopical studies in developing cerebellum. Dev Neurosci 11:414–427

    Article  PubMed  CAS  Google Scholar 

  15. Hynes MA, Gitt M, Barondes SH, Jessell TM, Buck LB (1990) Selective expression of an endogenous lactose-binding lectin gene in subsets of central and peripheral neurons. J Neurosci 10:1004–1013

    PubMed  CAS  Google Scholar 

  16. Gabius HJ, Wosgien B, Hendrys M, Bardosi A (1991) Lectin localization in human nerve by biochemically defined lectin-binding glycoproteins, neoglycoprotein and lectin-specific antibody. Histochemistry 95:269–277

    Article  PubMed  CAS  Google Scholar 

  17. Villalobo A, Nogales-González A, Gabius HJ (2006) A guide to signaling pathways connecting protein-glycan interaction with the emerging versatile effector functionality of mammalian lectins. Trends Glycosci Glycotechnol 18:1–37

    Article  CAS  Google Scholar 

  18. Kaltner H, Gabius HJ (2012) A toolbox of lectins for translating the sugar code: the galectin network in phylogenesis and tumors. Histol Histopathol (in press)

  19. Sakaguchi M, Shingo T, Shimazaki T, Okano HJ, Shiwa M, Ishibashi S, Oguro H, Ninomiya M, Kadoya T, Horie H, Shibuya A, Mizusawa H, Poirier F, Nakauchi H, Sawamoto K, Okano H (2006) A carbohydrate-binding protein, galectin-1, promotes proliferation of adult neural stem cells. Proc Natl Acad Sci USA 103:7112–7117

    Article  PubMed  CAS  Google Scholar 

  20. Yanagisawa M, Yu RK (2007) The expression and functions of glycoconjugates in neural stem cells. Glycobiology 17:57R–74R

    Article  PubMed  CAS  Google Scholar 

  21. Sakaguchi M, Imaizumi Y, Shingo T, Tada H, Hayama K, Yamada O, Morishita T, Kadoya T, Uchiyama N, Shimazaki T, Kuno A, Poirier F, Hirabayashi J, Sawamoto K, Okano H (2010) Regulation of adult neural progenitor cells by galectin-1/β1-integrin interaction. J Neurochem 113:1516–1524

    PubMed  CAS  Google Scholar 

  22. Tenne-Brown J, Puche AC, Key B (1998) Expression of galectin-1 in the mouse olfactory system. Int J Dev Biol 42:791–799

    PubMed  CAS  Google Scholar 

  23. Crandall JE, Dibble C, Butler D, Pays L, Ahmad N, Kostek C, Püschel AW, Schwarting GA (2000) Patterning of olfactory sensory connections is mediated by extracellular matrix proteins in the nerve layer of the olfactory bulb. J Neurobiol 45:195–206

    Article  PubMed  CAS  Google Scholar 

  24. Inagaki Y, Sohma Y, Horie H, Nozawa R, Kadoya T (2000) Oxidized galectin-1 promotes axonal regeneration in peripheral nerves but does not possess lectin properties. Eur J Biochem 267:2955–2964

    Article  PubMed  CAS  Google Scholar 

  25. Kopitz J, Russwurm R, Kaltner H, André S, Dotti CG, Gabius HJ, Abad-Rodríguez J (2004) Hippocampal neurons and recombinant galectins as tools for systematic carbohydrate structure-function studies in neuronal differentiation. Dev Brain Res 153:189–196

    Article  CAS  Google Scholar 

  26. Reichert F, Saada A, Rotshenker S (1994) Peripheral nerve injury induces Schwann cells to express two macrophage phenotypes: phagocytosis and the galactose-specific lectin MAC-2. J Neurosci 14:3231–3245

    PubMed  CAS  Google Scholar 

  27. Camby I, Belot N, Rorive S, Lefranc F, Maurage CA, Lahm H, Kaltner H, Hadari Y, Ruchoux MM, Brotchi J, Zick Y, Salmon I, Gabius HJ, Kiss R (2001) Galectins are differentially expressed in supratentorial pilocytic astrocytomas, astrocytomas, anaplastic astrocytomas and glioblastomas, and significantly modulate tumor astrocyte migration. Brain Pathol 11:12–26

    Article  PubMed  CAS  Google Scholar 

  28. Storan MJ, Magnaldo T, Biol-N’Garagba MC, Zick Y, Key B (2004) Expression and putative role of lactoseries carbohydrates present on NCAM in the rat primary olfactory pathway. J Comp Neurol 475:289–302

    Article  PubMed  CAS  Google Scholar 

  29. Stancic M, van Horssen J, Thijssen VL, Gabius HJ, van der Valk P, Hoekstra D, Baron W (2011) Increased expression of distinct galectins in multiple sclerosis lesions. Neuropathol Appl Neurobiol 37:654–671

    Article  PubMed  CAS  Google Scholar 

  30. Kopitz J, Mühl C, Ehemann V, Lehmann C, Cantz M (1997) Effects of cell surface ganglioside sialidase inhibition on growth control and differentiation of human neuroblastoma cells. Eur J Cell Biol 731:1–9

    Google Scholar 

  31. Kopitz J, von Reitzenstein C, Burchert M, Cantz M, Gabius HJ (1998) Galectin-1 is a major receptor for ganglioside GM1, a product of the growth-controlling activity of a cell surface ganglioside sialidase, on human neuroblastoma cells in culture. J Biol Chem 273:11205–11211

    Article  PubMed  CAS  Google Scholar 

  32. Ledeen RW, Wu G (2009) Neurobiology meets glycosciences. In: Gabius HJ (ed) The sugar code. Fundamentals of glycosciences. Wiley-VCH, Weinheim, pp 495–516

    Google Scholar 

  33. Kopitz J, von Reitzenstein C, André S, Kaltner H, Uhl J, Ehemann V, Cantz M, Gabius HJ (2001) Negative regulation of neuroblastoma cell growth by carbohydrate-dependent surface binding of galectin-1 and functional divergence from galectin-3. J Biol Chem 276:35917–35923

    Article  PubMed  CAS  Google Scholar 

  34. Kopitz J, André S, von Reitzenstein C, Versluis K, Kaltner H, Pieters RJ, Wasano K, Kuwabara I, Liu FT, Cantz M, Heck AJR, Gabius HJ (2003) Homodimeric galectin-7 (p53-induced gene 1) is a negative growth regulator for human neuroblastoma cells. Oncogene 22:6277–6288

    Article  PubMed  CAS  Google Scholar 

  35. André S, Kaltner H, Lensch M, Russwurm R, Siebert HC, Fallsehr C, Tajkhorshid E, Heck AJR, von Knebel Doeberitz M, Gabius HJ, Kopitz J (2005) Determination of structural and functional overlap/divergence of five proto-type galectins by analysis of the growth-regulatory interaction with ganglioside GM1 in silico and in vitro on human neuroblastoma cells. Int J Cancer 114:46–57

    Article  PubMed  Google Scholar 

  36. Kopitz J, Bergmann M, Gabius HJ (2010) How adhesion/growth-regulatory galectins-1 and -3 attain cell specificity: case study defining their target on neuroblastoma cells (SK-N-MC) and marked affinity regulation by affecting microdomain organization of the membrane. IUBMB Life 62:624–628

    Article  PubMed  CAS  Google Scholar 

  37. Wu AM, Wu JH, Liu JH, Singh T, André S, Kaltner H, Gabius HJ (2004) Effects of polyvalency of glycotopes and natural modifications of human blood group ABH/Lewis sugars at the Galβ1-terminated core saccharides on the binding of domain-I of recombinant tandem-repeat-type galectin-4 from rat gastrointestinal tract (G4-N). Biochimie 86:317–326

    Article  PubMed  CAS  Google Scholar 

  38. Delacour D, Gouyer V, Zanetta JP, Drobecq H, Leteurtre E, Grard G, Moreau-Hannedouche O, Maes E, Pons A, André S, Le Bivic A, Gabius HJ, Manninen A, Simons K, Huet G (2005) Galectin-4 and sulfatides in apical membrane trafficking in enterocyte-like cells. J Cell Biol 169:491–501

    Article  PubMed  CAS  Google Scholar 

  39. Stechly L, Morelle W, Dessein AF, André S, Grard G, Trinel D, Dejonghe MJ, Leteurtre E, Drobecq H, Trugnan G, Gabius HJ, Huet G (2009) Galectin-4-regulated delivery of glycoproteins to the brush border membrane of enterocyte-like cells. Traffic 10:438–450

    Article  PubMed  CAS  Google Scholar 

  40. Morelle W, Stechly L, André S, van Seuningen I, Porchet N, Gabius HJ, Michalski JC, Huet G (2009) Glycosylation pattern of brush border-associated glycoproteins in enterocyte-like cells: involvement of complex-type N-glycans in apical trafficking. Biol Chem 390:529–544

    Article  PubMed  CAS  Google Scholar 

  41. Ideo H, Seko A, Yamashita K (2005) Galectin-4 binds to sulfated glycosphingolipids and carcinoembryonic antigen in patches on the cell surface of human colon adenocarcinoma cells. J Biol Chem 280:4730–4737

    Article  PubMed  CAS  Google Scholar 

  42. Ideo H, Seko A, Yamashita K (2007) Recognition mechanism of galectin-4 for cholesterol 3-sulfate. J Biol Chem 282:21081–21089

    Article  PubMed  CAS  Google Scholar 

  43. Habermann FA, André S, Kaltner H, Kübler D, Sinowatz F, Gabius HJ (2011) Galectins as tools for glycan mapping in histology: comparison of their binding profiles to the bovine zona pellucida by confocal laser scanning microscopy. Histochem Cell Biol 135:539–552

    Article  PubMed  CAS  Google Scholar 

  44. Cooper DNW (2002) Galectinomics: finding themes in complexity. Biochim Biophys Acta 1572:209–231

    Article  PubMed  CAS  Google Scholar 

  45. Dam TK, Gabius HJ, André S, Kaltner H, Lensch M, Brewer CF (2005) Galectins bind to the multivalent glycoprotein asialofetuin with enhanced affinities and a gradient of decreasing binding constants. Biochemistry 44:12564–12571

    Article  PubMed  CAS  Google Scholar 

  46. André S, Sansone F, Kaltner H, Casnati A, Kopitz J, Gabius HJ, Ungaro R (2008) Calix[n]arene-based glycoclusters: bioactivity of thiourea-linked galactose/lactose moieties as inhibitors of binding of medically relevant lectins to a glycoprotein and cell-surface glycoconjugates and selectivity among human adhesion/growth-regulatory galectins. ChemBioChem 9:1649–1661

    Article  PubMed  Google Scholar 

  47. Martín-Santamaría S, André S, Buzamet E, Caraballo R, Fernández-Cureses G, Morando M, Ribeiro JP, Ramírez-Gualito K, de Pascual-Teresa B, Cañada FJ, Menéndez M, Ramström O, Jiménez-Barbero J, Solís D, Gabius HJ (2011) Symmetric dithiodigalactoside: strategic combination of binding studies and detection of selectivity between a plant toxin and human lectins. Org Biomol Chem 9:5445–5455

    Article  PubMed  Google Scholar 

  48. Ledeen RW (1984) Biology of gangliosides: neuritogenic and neuronotrophic properties. J Neurosci Res 12:147–159

    Article  PubMed  CAS  Google Scholar 

  49. Ledeen RW, Wu G (1992) Ganglioside function in the neuron. Trends Glycosci Glycotechnol 4:174–187

    Article  CAS  Google Scholar 

  50. Ledeen RW, Wu G (2002) Ganglioside function in calcium homeostasis and signaling. Neurochem Res 27:637–647

    Article  PubMed  CAS  Google Scholar 

  51. Kopitz J (2009) Glycolipids. In: Gabius HJ (ed) The sugar code. Fundamentals of glycosciences. Wiley-VCH, Weinheim, pp 177–198

    Google Scholar 

  52. Furukawa K, Ohmi Y, Ohkawa Y, Tokuda N, Kondo Y, Tajima O, Furukawa K (2011) Regulatory mechanisms of nervous systems with glycosphingolipids. Neurochem Res 36:1578–1586

    Article  PubMed  CAS  Google Scholar 

  53. Sonnino S, Aureli M, Loberto N, Chigorno V, Prinetti A (2011) Fine tuning of cell functions through remodeling of glycosphingolipids by plasma membrane-associated glycohydrolases. FEBS Lett 584:1914–1922

    Article  Google Scholar 

  54. Kopitz J, von Reitzenstein C, Sinz K, Cantz M (1996) Selective ganglioside desialylation in the plasma membrane of human neuroblastoma cells. Glycobiology 6:367–376

    Article  PubMed  CAS  Google Scholar 

  55. Hettmer S, Ladisch S, Kaucic K (2005) Low complex ganglioside expression characterizes human neuroblastoma cell lines. Cancer Lett 225:141–149

    Article  PubMed  CAS  Google Scholar 

  56. Wang J, Lu ZH, Gabius HJ, Rohowsky-Kochan C, Ledeen RW, Wu G (2009) Cross-linking of GM1 ganglioside by galectin-1 mediates regulatory T cell activity involving TRPC5 channel activation: possible role in suppressing experimental autoimmuneencephalomyelitis. J Immunol 182:4036–4045

    Article  PubMed  CAS  Google Scholar 

  57. Wu G, Lu ZH, Gabius HJ, Ledeen RW, Bleich D (2011) Ganglioside GM1 deficiency in effector T cells from NOD mice induces resistance to regulatory T-cell suppression. Diabetes 60:2341–2349

    Article  PubMed  CAS  Google Scholar 

  58. Ledeen RW, Wu G (2006) Sphingolipids of the nucleus and their role in nuclear signaling. Biochim Biophys Acta 1761:588–598

    PubMed  CAS  Google Scholar 

  59. Smetana K Jr, Dvoránková B, Chovanec M, Boucek J, Klíma J, Motlík J, Lensch M, Kaltner H, André S, Gabius HJ (2006) Nuclear presence of adhesion-/growth-regulatory galectins in normal/malignant cells of squamous epithelial origin. Histochem Cell Biol 125:171–182

    Article  PubMed  CAS  Google Scholar 

  60. Ledeen RW, Wu G (2011) New findings on nuclear gangliosides: overview on metabolism and function. J Neurochem 116:714–720

    Article  PubMed  CAS  Google Scholar 

  61. Göhler A, André S, Kaltner H, Sauer M, Gabius HJ, Doose S (2010) Hydrodynamic properties of human adhesion/growth-regulatory galectins studied by fluorescence correlation spectroscopy. Biophys J 98:3044–3053

    Article  PubMed  Google Scholar 

  62. Kaltner H, Solís D, André S, Lensch M, Manning JC, Mürnseer M, Sáiz JL, Gabius HJ (2009) Unique chicken tandem-repeat-type galectin: implications of alternative splicing and a distinct expression profile compared to those of the three proto-type proteins. Biochemistry 48:4403–5516

    Article  PubMed  CAS  Google Scholar 

  63. Sanchez-Ruderisch H, Fischer C, Detjen KM, Welzel M, Wimmel A, Manning JC, André S, Gabius HJ (2010) Tumor suppressor p16 INK4a: downregulation of galectin-3, an endogenous competitor of the pro-anoikis effector galectin-1, in a pancreatic carcinoma model. FEBS J 277:3552–3563

    Article  PubMed  CAS  Google Scholar 

  64. Gabius HJ, Brehler R, Schauer A, Cramer F (1986) Localization of endogenous lectins in normal human breast, benign breast lesions and mammary carcinomas. Virchows Arch [Cell Pathol] 52:107–115

    Article  CAS  Google Scholar 

  65. Kayser K, Höft D, Hufnagl P, Caselitz J, Zick Y, André S, Kaltner H, Gabius HJ (2003) Combined analysis of tumor growth pattern and expression of endogenous lectins as a prognostic tool in primary testicular cancer and its lung metastases. Histol Histopathol 18:771–779

    PubMed  CAS  Google Scholar 

  66. Langbein S, Brade J, Badawi JK, Hatzinger M, Kaltner H, Lensch M, Specht K, André S, Brinck U, Alken P, Gabius HJ (2007) Gene-expression signature of adhesion/growth-regulatory tissue lectins (galectins) in transitional cell cancer and its prognostic relevance. Histopathology 51:681–690

    Article  PubMed  CAS  Google Scholar 

  67. Čada Z, Smetana K Jr, Lacina L, Plzáková Z, Stork J, Kaltner H, Russwurm R, Lensch M, André S, Gabius HJ (2009) Immunohistochemical fingerprinting of the network of seven adhesion/growth-regulatory lectins in human skin and detection of distinct tumour-associated alterations. Folia Biol (Praha) 55:145–152

    Google Scholar 

  68. Cludts S, Decaestecker C, Mahillon V, Chevalier D, Kaltner H, André S, Remmelink M, Leroy X, Gabius HJ, Saussez S (2009) Galectin-8 up-regulation during hypopharyngeal and laryngeal tumor progression and comparison with galectins-1, -3 and -7. Anticancer Res 9:4933–4940

    Google Scholar 

  69. Saussez S, de Leval L, Decaestecker C, Sirtaine N, Cludts S, Duray A, Chevalier D, André S, Gabius HJ, Remmelink M, Leroy X (2010) Galectin fingerprinting in Warthin’s tumors: lectin-based approach to trace its origin? Histol Histopathol 25:541–550

    PubMed  Google Scholar 

  70. Remmelink M, de Leval L, Decaestecker C, Duray A, Crompot E, Sirtaine N, André S, Kaltner H, Leroy X, Gabius HJ, Saussez S (2011) Quantitative immunohistochemical fingerprinting of adhesion/growth-regulatory galectins in salivary gland tumours: divergent profiles with diagnostic potential. Histopathology 58:543–556

    Article  PubMed  Google Scholar 

  71. Zeng Y, Cheng H, Jiang X, Han X (2008) Endosomes and lysosomes play distinct roles in sulfatide-induced neuroblastoma apoptosis: potential mechanisms contributing to abnormal sulfatide metabolism in related neuronal diseases. Biochem J 410:81–92

    Article  PubMed  CAS  Google Scholar 

  72. Wei Q, Eviatar-Ribak T, Miskimins WK, Miskimins R (2007) Galectin-4 is involved in p27-mediated activation of the myelin basic protein promoter. J Neurochem 101:1214–1223

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. B. Friday for inspiring discussions and for generous funding from the EC Seventh Framework Program (FP7/2007-2013) under grant agreement no. 2602600 (“GlycoHIT”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Kopitz.

Additional information

Special Issue: In Honor of Bob Leeden.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kopitz, J., Ballikaya, S., André, S. et al. Ganglioside GM1/Galectin-Dependent Growth Regulation in Human Neuroblastoma Cells: Special Properties of Bivalent Galectin-4 and Significance of Linker Length for Ligand Selection. Neurochem Res 37, 1267–1276 (2012). https://doi.org/10.1007/s11064-011-0693-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-011-0693-x

Keywords

Navigation