Skip to main content

Advertisement

Log in

Cathepsin B and Phospo-JNK in Relation to Ongoing Apoptosis after Transient Focal Cerebral Ischemia in the Rat

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Cathepsin B, one of major lysosomal cathepsins, and JNK, a downstream component of Rho kinase (ROCK), are two families of proteases, which play an important role in ischemic cell apoptosis. However, the interrelationship between Cathepsin B and JNK in apotosis has not been examined. In the present study, rats were decapitated at 0, 2, 6, 24, 48 h of reperfusion after 2 h of middle cerebral artery occlusion (MCAO); TUNEL-positive cells appeared in the ipsilateral preoptic region during reperfusion after 2-h MCAO, and gradually increased to a peak of 24 h after reperfusion; Phospho-JNK (p-JNK) immunoreactivity, occurring after Cathepsin B expression, was gradually increased and peaked altogether with Cathepsin B at 6-h reperfusion; Fasudil (5 mg/kg, intraperitoneally), an inhibitor of ROCK, decreased the level of p-JNK and apoptotic neurons, and had no effect on cathepsin B; Immunofluorescent double labeling showed that the colocalization of cathepsin B with p-JNK appeared in the preoptic region at 2, 6, 24, 48 h of reperfusion. These findings indicate that a signal transduction pathway by ischemia–reperfusion is most likely to exist: lysosomal cathepsin B-Rho/Rho kinase pathway-JNK signaling pathway-mitochondrial-dependent intrinsic pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Seyfried D, Han Y, Zheng Z et al (1997) Cathepsin B and middle cerebral artery occlusion in the rat. J Neurosurg 87:716–723

    Article  PubMed  CAS  Google Scholar 

  2. Guicciardi ME, Miyoshi H, Bronk SF et al (2001) Cathepsin B knockout mice are resistant to tumor necrosis factor-α-mediated hepatocyte apoptosis and liver injury. Am J Pathol 159:2045–2054

    Article  PubMed  CAS  Google Scholar 

  3. Cirman T, Oresić K, Mazovec GD et al (2004) Selective disruption of lysosomes in HeLa cells triggers apoptosis mediated by cleavage of Bid by multiple papain-like lysosomal cathepsins. J Biol Chem 279:3578–3587

    Article  PubMed  CAS  Google Scholar 

  4. Caruso JA, Mathieu PA, Joiakim A et al (2006) Aryl hydrocarbon receptor modulation of tumor necrosis factor-alpha-induced apoptosis and lysosomal disruption in a hepatoma model that is caspase-8-independent. J Biol Chem 281:10954–10967

    Article  PubMed  CAS  Google Scholar 

  5. Conus S, Perozzo R, Reinheckel T et al (2008) Caspase-8 is activated by cathepsin D initiating neutrophil apoptosis during the resolution of inflammation. J Exp Med 205:685–698

    Article  PubMed  CAS  Google Scholar 

  6. Zheng L, Kågedal K, Dehvari N et al (2009) Oxidative stress induces macroautophagy of amyloid beta-protein and ensuing apoptosis. Free Radic Biol Med 46:422–429

    Article  PubMed  CAS  Google Scholar 

  7. Seyfried D, Veyna R, Han Y et al (2001) A selective cysteine protease inhibitor is non-toxic and cerebroprotective in rats undergoing transient middle cerebral artery ischemia. Brain Res 901:94–101

    Article  PubMed  CAS  Google Scholar 

  8. Tsubokawa T, Yamaguchi-Okada M, Calvert JW et al (2006) Neurovascular and neuronal protection by E64d after focal cerebral ischemia in rats. J Neurosci Res 84:832–840

    Article  PubMed  CAS  Google Scholar 

  9. Anagli J, Abounit K, Stemmer P et al (2008) Effects of cathepsins B and L inhibition on postischemic protein alterations in the brain. Biochem Biophys Res Commun 366:86–91

    Article  PubMed  CAS  Google Scholar 

  10. Cataldo AM, Paskevich PA, Kominami E et al (1991) Lysosomal hydrolases of different classes are abnormally distributed in brains of patients with Alzheimer disease. Proc Natl Acad Sci USA 88:10998–11002

    Article  PubMed  CAS  Google Scholar 

  11. Sugino T, Nozaki K, Takagi Y et al (2000) Activation of mitogen-activated protein kinasesafter transient forebrain ischemia in gerbil hippocampus. J Neurosci 20:4506–4514

    PubMed  CAS  Google Scholar 

  12. Irving EA, Bamford M (2002) Role of mitogen- and stress-activated kinases in ischemic injury. J Cereb Blood Flow Metab 22:631–647

    Article  PubMed  CAS  Google Scholar 

  13. Borsello T, Clarke PG, Hirt L et al (2003) A peptide inhibitor of c-Jun N-terminal kinase protects against excitotoxicity and cerebral ischemia. Nat Med 9:1180–1186

    Article  PubMed  CAS  Google Scholar 

  14. Okuno S, Saito A, Hayashi T et al (2004) The c-Jun N-terminal protein kinase signaling pathway mediates Bax activation and subsequent neuronal apoptosis through interaction with Bim after transient focal cerebral ischemia. J Neurosci 24:7879–7887

    Article  PubMed  CAS  Google Scholar 

  15. Shi J, Wei L (2007) Rho kinase in the regulation of cell death and survival. Arch Immunol Ther Exp (Warsz) 55:61–75

    Article  Google Scholar 

  16. Marinissen MJ, Chiariello M, Tanos T et al (2004) The small GTP-binding protein RhoA regulates c-jun by a ROCK-JNK signaling axis. Mol Cell 14:29–41

    Article  PubMed  CAS  Google Scholar 

  17. Longa EZ, Weinstein PR, Carlson S et al (1989) Reversiblemiddle cerebral artery occlusion without craniectomy in rats. Stroke 20:84–91

    Article  PubMed  CAS  Google Scholar 

  18. Garcia JH, Yoshida Y, Chen H et al (1993) Progression from ischemic injury to infarct following middle cerebral artery occlusion in the rat. Am J Pathol 142:623–635

    PubMed  CAS  Google Scholar 

  19. Chaitanya GV, Babu PP (2008) Activation of calpain, cathepsin-b and caspase-3 during transient focal cerebral ischemia in rat model. Neurochem Res 33:2178–2186

    Article  PubMed  CAS  Google Scholar 

  20. Li Y, Chopp M, Jiang N et al (1995) Temporal profile of in situ DNA fragmentation after transient middle cerebral artery occlusion in the rat. J Cereb Blood Flow Metab 15:389–397

    Article  PubMed  CAS  Google Scholar 

  21. Benchoua A, Braudeau J, Reis A et al (2004) Activation of proinflammatory caspase by cathepsin B in focal cerebral ischemia. J Cereb Blood Flow Metab 24:1272–1279

    Article  PubMed  CAS  Google Scholar 

  22. Hayashi T, Sakai K-I, Sasaki C et al (2000) c-Jun N-terminal kianse (JNK)and JNK interacting protein response in rat brain after transient middle cerebral artery occlusion. Neurosci Letts 284:195–199

    Article  CAS  Google Scholar 

  23. Wen J, Watanabe K, Ma M et al (2006) Edaravone inhibits JNK-c-Jun pathway and restores anti-oxidative defense after ischemia-reperfusion injury in aged rats. Biol Pharm Bull 29:713–718

    Article  PubMed  CAS  Google Scholar 

  24. Guicciardi ME, Deussing J, Miyoshi H (2000) Cathepsin B contributes to TNF-α–mediated hepatocyte apoptosis by promoting mitochondrial release of cytochrome c. J Clin Invest 106:1127–1137

    Article  PubMed  CAS  Google Scholar 

  25. Wei MC, Lindsten T, Mootha VK et al (2000) tBID, a membrane-targeted death ligand, oligomerizes BAK to release cytochrome c. Genes Dev 14:2060–2071

    PubMed  CAS  Google Scholar 

  26. Reiners JJ Jr, Caruso JA, Mathieu P et al (2002) Release of cytochrome c and activation of pro-caspase-9 following lysosomal photodamage involves bid cleavage. Cell Death Differ 9:934–944

    Article  PubMed  CAS  Google Scholar 

  27. Boya P, Andreau K, Poncet D et al (2003) Lysosomal membrane permeabilization induces cell death in a mitochondrion-dependent fashion. J Exp Med 197:1323–1334

    Article  PubMed  CAS  Google Scholar 

  28. Furman LM, Maaty WS, Petersen LK et al (2009) Cysteine protease activation and apoptosis in Murine norovirus infection. Virol J 6:139

    Article  PubMed  Google Scholar 

  29. Tournier C, Hess P, Yang DD et al (2000) Requirement of JNK for stress-induced activation of the cytochrome c-mediated death pathway. Science 288:870–874

    Article  PubMed  CAS  Google Scholar 

  30. Eskes R, Desagher S, Antonsson B et al (2000) Bid induces the oligomerization and insertion of Bax into the outer mitochondrial membrane. Mol Cell Biol 20:929–935

    Article  PubMed  CAS  Google Scholar 

  31. Lei K, Nimnual A, Zong W-X et al (2002) The Bax subfamily of Bcl2-related proteins is essential for apoptotic signal transduction by c-Jun NH2-terminal kinase. Mol Cell Biol 22:4929–4942

    Article  PubMed  CAS  Google Scholar 

  32. Lei K, Davis RJ et al (2003) JNK phosphorylation of Bim-related members of the Bcl2 family induces Bax-dependent apoptosis. Proc Natl Acad Sci USA 100:2432–2437

    Article  PubMed  CAS  Google Scholar 

  33. Kuwana T, Bouchier-Hayes L, Chipuk JE, Newmeyer DD et al (2005) BH3 domains of BH3-only proteins differentially regulate Bax-mediated mitochondrial membrane permeabilization both directly and indirectly. Mol Cell 17:525–535

    Article  PubMed  CAS  Google Scholar 

  34. Wang YX, Martin-McNulty B, da Cunha V et al (2005) Fasudil, a Rho-kinase inhibitor, attenuates angiotensin II-induced abdominal aortic aneurysm in apolipoprotein E-deficient mice by inhibiting apoptosis and proteolysis. Circulation 111:2219–2226

    Article  PubMed  CAS  Google Scholar 

  35. Petrache I, Crow MT, Neuss M et al (2003) Central involvement of Rho family GTPases in TNF-alpha-mediated bovine pulmonary endothelial cell apoptosis. Biochem Biophys Res Commun 306:244–249

    Article  PubMed  CAS  Google Scholar 

  36. Wang XT, Pei DS, Xu J et al (2007) Opposing effects of Bad phosphorylation at two distinct sites by Akt1 and JNK1/2 on ischemic brain injury. Cell Signal 19:1844–1856

    Article  PubMed  CAS  Google Scholar 

  37. Ying H, Biroc SL, Li WW et al (2006) The Rho kinase inhibitor fasudil inhibits tumor progression in human and rat tumor models. Mol Cancer Ther 5:2158–2164

    Article  PubMed  CAS  Google Scholar 

  38. Ikeda H, Kume Y, Tejima K et al (2007) Rho-kinase inhibitor prevents hepatocyte damage in acute liver injury induced by carbon tetrachloride in rats. Am J Physiol Gastrointest Liver Physiol 293:G911–G917

    Article  PubMed  CAS  Google Scholar 

  39. Taoufiq Z, Gay F, Balvanyos J et al (2008) Rho kinase inhibition in severe malaria: thwarting parasite-induced collateral damage to endothelia. J Infect Dis 197:1062–1073

    Article  PubMed  Google Scholar 

  40. Olson MF (2008) Applications for ROCK kinase inhibition. Curr Opin Cell Biol 20:242–248

    Article  PubMed  CAS  Google Scholar 

  41. Arita R, Hata Y, Nakao S et al (2009) Rho kinase inhibition by fasudil ameliorates diabetes-induced microvascular damage. Diabetes 58:215–226

    Article  PubMed  CAS  Google Scholar 

  42. Yamashima T, Tonchev AB, Tsukada T et al (2003) Sustained calpain activation is associated with lysosomal rupture executes necrosis of the postischemic CA1 neurons in primates. Hippocampus 13:791–800

    Article  PubMed  CAS  Google Scholar 

  43. Sahara S, Yamashima T (2010) Calpain-mediated Hsp70.1 cleavage in hippocampal CA1 neuronal death. Biochem Biophys Res Commun 393:806–811

    Article  PubMed  CAS  Google Scholar 

  44. Yamashima T (2011) Hsp70.1 and related lysosomal factors for necrotic neuronal death. J Neurochem. doi:10.1111/j.1471-4159.2011.07596.x

  45. Yap YW, Whiteman M, Bay BH et al (2006) Hypochlorous acid induces apoptosis of cultured cortical neurons through activation of calpains and rupture of lysosomes. J Neurochem 98:1597–1609

    Article  PubMed  CAS  Google Scholar 

  46. Liu L, Xing D, Chen WR (2009) Micro-calpain regulates caspase-dependent and apoptosis inducing factor-mediated caspase-independent apoptotic pathways in cisplatin-induced apoptosis. Int J Cancer 125:2757–2766

    Article  PubMed  CAS  Google Scholar 

  47. Nozaki K, Das A, Ray SK et al (2010) Calpain inhibition attenuates intracellular changes in muscle cells in response to extracellular inflammatory stimulation. Exp Neurol 225:430–435

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was subsidized by University of South China, the First Hospital of Changsha and Changsha Institute of Neurology. We would like to extend our great gratitude to teaches from Neurology Lab of Xiangya Hospital of Central South University for their help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi Gang Li.

Additional information

Z. G. Li and Z. B. Zhang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Z.B., Li, Z.G. Cathepsin B and Phospo-JNK in Relation to Ongoing Apoptosis after Transient Focal Cerebral Ischemia in the Rat. Neurochem Res 37, 948–957 (2012). https://doi.org/10.1007/s11064-011-0687-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-011-0687-8

Keywords

Navigation