Skip to main content
Log in

Role of a Neural Cell Adhesion Molecule Found in Cerebrospinal Fluid as a Potential Biomarker for Epilepsy

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The neural cell adhesion molecule (NCAM-1) plays an important role in cell adhesion and synaptic plasticity. We designed this study to evaluate NCAM-1 as a potential biomarker for epilepsy. We performed a quantitative evaluation of the levels of NCAM-1 in cerebrospinal fluid (CSF) and serum and noted differences in patients with epilepsy compared to control subjects. We used sandwich enzyme-linked immunosorbent assays to measure NCAM-1 concentrations in CSF and serum samples of 76 epileptic patients (subdivided into the following subgroups: drug-refractory epilepsy, DRE; first-diagnosis epilepsy, FDE; and drug-effective epilepsy, DEE) and 44 control subjects. Our results show that cerebrospinal fluid–NCAM-1 (CSF–NCAM-1) concentrations and NCAM-1 Indices in the epileptic group were lower than in the control group. Both the CSF–NCAM-1 concentration and the NCAM-1 Indices in the drug-refractory epilepsy group were lower than in the drug-effective epilepsy group. These differences were statistically significant (P < 0.05). However, serum–NCAM-1 levels were not statistically different when comparing the epilepsy group to the control group (P > 0.05). Our results indicate that CSF–NCAM-1 is a potential biomarker for drug-effective epilepsy and drug-refractory epilepsy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Löscher W, Klotz U, Zimprich F et al (2009) The clinical impact of pharmacogenetics on the treatment of epilepsy. Epilepsia 50:1–23

    Article  PubMed  Google Scholar 

  2. Sander JW, Shorvon SD (1996) Epidemiology of the epilepsies. J Neurol Neurosurg Psychiatr 61:433–443

    Article  PubMed  CAS  Google Scholar 

  3. Liu CC, Pardalos PM, Chaovalitwongse WA et al (2008) Quantitative complexity analysis in multi-channel intracranial EEG recordings form epilepsy brains. J Comb Optim 15:276–286

    Article  PubMed  Google Scholar 

  4. Hui AC, Kwan P, Leung TW et al (2007) Diagnostic value and safety of long-term video-EEG monitoring. Hong Kong Med J 13:228–230

    PubMed  Google Scholar 

  5. Jack CR Jr (1996) Magnetic resonance imaging in epilepsy. Mayo Clin Proc 71:695–711

    Article  PubMed  Google Scholar 

  6. Choi JY, Kim SJ, Hong SB et al (2003) Extratemporal hypometabolism on FDG PET in temporal lobe epilepsy as a predictor of seizure outcome after temporal lobectomy. Eur J Nucl Med Mol Imaging 30:581–587

    Article  PubMed  Google Scholar 

  7. Deblaere K, Backes WH, Hofman P et al (2002) Developing a comprehensive presurgical functional MRI protocol for patients with intractable temporal lobe epilepsy: a pilot study. Neuroradiology 44:667–673

    Article  PubMed  CAS  Google Scholar 

  8. Smith D, Defalla BA, Chadwick DW et al (1999) The misdiagnosis of epilepsy and the management of refractory epilepsy in a specialist clinic. QJM-INT J Med 92:15–23

    Google Scholar 

  9. Benbadis S (2009) The differential diagnosis of epilepsy: a critical review. Epilepsy Behav 15:15–21

    Article  PubMed  CAS  Google Scholar 

  10. Wang L, Pan Y, Xiao Z et al (2010) Tetranectin is a potential biomarker in cerebrospinal fluid and serum of patients with epilepsy. Clin Chim Acta 411:581–583

    Article  PubMed  CAS  Google Scholar 

  11. Xiao Z, Shen L, Wang L, Wang X et al (2010) Talin 2 concentrations in cerebrospinal fluid in patients with epilepsy. Clin Biochem 43:1129–1132

    Article  PubMed  CAS  Google Scholar 

  12. Xiao F, Chen D, Lu Y, Wang X et al (2009) Proteomic analysis of cerebrospinal fluid from patients with idiopathic temporal lobe epilepsy. Brain Res 1255:180–189

    Article  PubMed  CAS  Google Scholar 

  13. Lin T, Wang X, Zeng Y et al (2008) The expression of NCAM-140 kDa in temporal lobe neocortex of patients with intractable epilepsy: the relation between the plasticity of temporal lobe neocortex and in tractable epilepsy. Zhong Feng Yu Shen Jing Ji Bing Za Zhi 25:305–308

    CAS  Google Scholar 

  14. Gnanapavan S, Grant D, Illes-Toth E et al (2010) Neural cell adhesion molecule–description of a CSF ELISA method and evidence of reduced levels in selected neurological disorders. J Neuroimmunol 225:118–122

    Article  PubMed  CAS  Google Scholar 

  15. Massaro AR, De Pascalis D, Carnevale A et al (2009) The neural cell adhesion molecule (NCAM) present in the cerebrospinal fluid of multiple sclerosis patients is unsialylated. Eur Rev Med Pharmacol Sci 13:397–399

    PubMed  CAS  Google Scholar 

  16. Massaro AR (2002) The role of NCAM in remyelination. Neurol Sci 22:429–435

    Article  PubMed  CAS  Google Scholar 

  17. Vawter MP, Frye MA, Hemperly JJ et al (2000) Elevated concentration of N-CAM VASE isoforms in schizophrenia. J Psychiatr Res 34:25–34

    Article  PubMed  CAS  Google Scholar 

  18. Vawter MP (2000) Dysregulation of the neural cell adhesion molecule and neuropsychiatric disorders. Eur J Pharmacol 405:385–395

    Article  PubMed  CAS  Google Scholar 

  19. Poltorak M, Frye MA, Wright R et al (1996) Increased neural cell adhesion molecule in the CSF of patients with mood disorder. J Neurochem 66:1532–1538

    Article  PubMed  CAS  Google Scholar 

  20. van Kammen DP, Poltorak M, Kelley ME et al (1998) Further studies of elevated cerebrospinal fluid neuronal cell adhesion molecule in schizophrenia. Biol Psychiatr 43:680–686

    Article  Google Scholar 

  21. Seino M (2006) Classification criteria of epileptic seizures and syndromes. Epilepsy Res 70(Suppl 1):S27–S33

    Article  PubMed  Google Scholar 

  22. Cunningham BA, Hemperly JJ, Murray BA et al (1987) Neural cell adhesion molecule: structure, immunoglobulin-like domains, cell surface modulation, and alternative RNA splicing. Science 236:799–806

    Article  PubMed  CAS  Google Scholar 

  23. Rønn LC, Hartz BP, Bock E et al (1998) The neural cell adhesion molecule (NCAM) in development and plasticity of the nervous system. Exp Gerontol 33:853–864

    Article  PubMed  Google Scholar 

  24. Rønn LC, Berezin V, Bock E et al (2000) The neural cell adhesion molecule in synaptic plasticity and ageing. Int J Dev Neurosci 18:193–199

    Article  PubMed  Google Scholar 

  25. Berezin V, Bock E, Poulsen FM et al (2000) The neural cell adhesion molecule. Curr Opin Drug Discov Dev 3:605–609

    CAS  Google Scholar 

  26. Bock E, Edvardsen K, Gibson A et al (1987) Characterization of soluble forms of NCAM. FEBS Lett 225:33–36

    Article  PubMed  CAS  Google Scholar 

  27. Krog L, Olsen M, Dalseg AM et al (1992) Characterization of soluble neural cell adhesion molecule in rat brain, CSF, and plasma. J Neurochem 59:838–847

    Article  PubMed  CAS  Google Scholar 

  28. Fogar P, Basso D, Pasquali C et al (1997) Neural cell adhesion molecule (N-CAM) in gastrointestinal neoplasias. Anticancer Res 17:1227–1230

    PubMed  CAS  Google Scholar 

  29. Kameda K, Shimada H, Ishikawa T et al (1999) Expression of highly polysialylated neural cell adhesion molecule in pancreatic cancer neural invasive lesion. Cancer Lett 137:201–207

    Article  PubMed  CAS  Google Scholar 

  30. Sasaki H, Yoshida K, Ikeda E et al (1998) Expression of the neural cell adhesion molecule in astrocytic tumors: an inverse correlation with malignancy. Cancer 82:1921–1931

    Article  PubMed  CAS  Google Scholar 

  31. Tezel E, Kawase Y, Takeda S et al (2001) Expression of neural cell adhesion molecule in pancreatic cancer. Pancreas 22:122–125

    Article  PubMed  CAS  Google Scholar 

  32. Novotny JR, Nückel H, Dührsen U et al (2006) Correlation between expression of CD56/NCAM and severe leukostasis in hyperleukocytic acute myelomonocytic leukaemia. Eur J Haematol 76:299–308

    Article  PubMed  CAS  Google Scholar 

  33. Campodónico PB, de Kier Joffé ED, Urtreger AJ et al (2010) The neural cell adhesion molecule is involved in the metastatic capacity in a murine model of lung cancer. Mol Carcinog 49:386–397

    PubMed  Google Scholar 

  34. Jaques G, Auerbach B, Pritsch M et al (1993) Evaluation of serum neural cell adhesion molecule as a new tumor marker in small cell lung cancer. Cancer 72:418–425

    Article  PubMed  CAS  Google Scholar 

  35. Lehmann JM, Riethmüller G, Johnson JP et al (1989) MUC18, a marker of tumor progression in human melanoma, shows sequence similarity to the neural cell adhesion molecules of the immunoglobulin superfamily. Proc Natl Acad Sci USA 86:9891–9895

    Article  PubMed  CAS  Google Scholar 

  36. Shi Y, Liu R, Zhang S et al (2011) Neural cell adhesion molecule potentiates invasion and metastasis of melanoma cells through CAMP-dependent protein kinase and phosphatidylinositol 3-kinase pathways. Int J Biochem Cell Biol 43:682–690

    Article  PubMed  CAS  Google Scholar 

  37. Todaro L, Christiansen S, Varela M et al (2007) Alteration of serum and tumoral neural cell adhesion molecule (NCAM) isoforms in patients with brain tumors. J Neurooncol 83:135–144

    Article  PubMed  CAS  Google Scholar 

  38. Zołtowska A, Stepiński J, Lewko B et al (2001) Neural cell adhesion molecule in breast, colon and lung carcinomas. Arch Immunol Ther Exp (Warsz) 49:171–174

    Google Scholar 

  39. Lynch DF Jr, Hassen W, Clements MA et al (1997) Serum levels of endothelial and neural cell adhesion molecules in prostate cancer. Prostate 32:214–220

    Article  PubMed  CAS  Google Scholar 

  40. Fox GB, Kjøller C, Murphy KJ et al (2001) The modulations of NCAM polysialylation state that follow transient global ischemia are brief on neurons but enduring on glia. J Neuropathol Exp Neurol 60:132–140

    PubMed  CAS  Google Scholar 

  41. Rønn LC, Dissing S, Holm A et al (2002) Increased intracellular calcium is required for neurite outgrowth induced by a synthetic peptide ligand of NCAM. FEBS Lett 518:60–66

    Article  PubMed  Google Scholar 

  42. Gomez TM, Spitzer NC (1999) In vivo regulation of axon extension and pathfinding by growth-cone calcium transients. Nature 397:350–355

    Article  PubMed  CAS  Google Scholar 

  43. Sato K, Iwai M, Zhang WR et al (2003) Highly polysialylated neural cell adhesion molecule (PSA–NCAM) positive cells are increased and change localization in rat hippocampus by exposure to repeated kindled seizures. Acta Neurochir Suppl 86:575–579

    Article  PubMed  CAS  Google Scholar 

  44. Duveau V, Fritschy JM (2010) PSA–NCAM-dependent GDNF signaling limits neurodegeneration and epileptogenesis in temporal lobe epilepsy. Eur J Neurosci 32:89–98

    Article  PubMed  Google Scholar 

  45. Kiryushko D, Kofoed T, Skladchikova G et al (2003) A synthetic peptide ligand of neural cell adhesion molecule (NCAM), C3d, promotes neuritogenesis and synaptogenesis and modulates presynaptic function in primary cultures of rat hippocampal neurons. J Biol Chem 278:12325–12334

    Article  PubMed  CAS  Google Scholar 

  46. Rigau V, Morin M, Rousset MC et al (2007) Angiogenesis is associated with blood–brain barrier permeability in temporal lobe epilepsy. Brain 130:1942–1956

    Article  PubMed  Google Scholar 

  47. Oby E, Janigro D (2006) The blood–brain barrier and epilepsy. Epilepsia 47:1761–1774

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by funds from the National Natural Science of China (No. 81071039). We thank the patients and their families for their participation in this study. We also sincerely thank the First Affiliated Hospital of Chongqing Medical University and the Affiliated Hospital of Guiyang Medical College for support and assistance in CSF and serum procurement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lan Chu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, W., Wang, L., Luo, J. et al. Role of a Neural Cell Adhesion Molecule Found in Cerebrospinal Fluid as a Potential Biomarker for Epilepsy. Neurochem Res 37, 819–825 (2012). https://doi.org/10.1007/s11064-011-0677-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-011-0677-x

Keywords

Navigation