Skip to main content

Advertisement

Log in

Time-Course Alterations of Toll-Like Receptor 4 and NF-κB p65, and Their Co-Expression in the Gerbil Hippocampal CA1 Region After Transient Cerebral Ischemia

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Innate immune system is very important to modulate the host defense against a large variety of pathogens. Toll-like receptors (TLRs) play a key role in controlling innate immune response. Among TLRs, TLR4 is a specific receptor for lipopolysaccharide and associated with the release of pro-inflammatory cytokines. In the present study, we investigated ischemia-related changes of TLR4 immunoreactivity and its protein level, and nuclear factor κB (NF-κB) p65 immunoreactivity regarding inflammatory responses in the hippocampal CA1 region after 5 min of transient cerebral ischemia to identify the correlation between transient ischemia and inflammation. In the sham-operated group, TLR4 immunoreactivity was easily detected in pyramidal neurons of the hippocampal CA1 region (CA1). TLR4 immunoreactivity in pyramidal neurons was distinctively decreased after ischemia/reperfusion (I/R); instead, based on double immunofluorescence study, TLR4 immunoreactivity was expressed in non-pyramidal neurons and astrocytes from 2 days postischemia. In addition, TLR4 protein level was lowest at 1 day postischemia and highest 4 days after I/R. On the other hand, NF-κB p65 immunoreactivity was not detected in the CA1 of the sham-operated group, and NF-κB p65 immunoreactivity was not observed until 1 day after I/R. However, NF-κB p65 immunoreactivity began to be expressed in astrocytes at 2 days postischemia, and the immunoreactivity was strong 4 days postischemia. Our results indicate that TLR4 and NF-κB p65 immunoreactivity are changed in CA1 pyramidal neurons and newly expressed in astrocytes, not in microglia, in the CA1 region after transient cerebral ischemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Carson MJ, Doose JM, Melchior B, Schmid CD, Ploix CC (2006) CNS immune privilege: hiding in plain sight. Immunol Rev 213:48–65

    Article  PubMed  Google Scholar 

  2. Nau R, Brück W (2002) Neuronal injury in bacterial meningitis: mechanisms and implications for therapy. Trends Neurosci 25:38–45

    Article  PubMed  CAS  Google Scholar 

  3. Medzhitov R, Janeway CA Jr (1997) Innate immunity: the virtues of a nonclonal system of recognition. Cell 91:295–298

    Article  PubMed  CAS  Google Scholar 

  4. Olson JK, Miller SD (2004) Microglia initiate central nervous system innate and adaptive immune responses through multiple TLRs. J Immunol 173:3916–3924

    PubMed  CAS  Google Scholar 

  5. Alfonso-Loeches S, Pascual-Lucas M, Blanco AM, Sanchez-Vera I, Guerri C (2010) Pivotal role of TLR4 receptors in alcohol-induced neuroinflammation and brain damage. J Neurosci 30:8285–8295

    Article  PubMed  CAS  Google Scholar 

  6. Krasowska-Zoladek A, Banaszewska M, Kraszpulski M, Konat GW (2007) Kinetics of inflammatory response of astrocytes induced by TLR 3 and TLR4 ligation. J Neurosci Res 85:205–212

    Article  PubMed  CAS  Google Scholar 

  7. Wirz SA, Tobias PS, Ulevitch RJ, Aribibe L, Bartfai T (2006) TLR2 is required for the altered transcription of p75NGF receptors in gram positive infection. Neurochem Res 31:297–301

    Article  PubMed  CAS  Google Scholar 

  8. Nishimura M, Naito S (2005) Tissue-specific mRNA expression profiles of human toll-like receptors and related genes. Biol Pharm Bull 28:886–892

    Article  PubMed  CAS  Google Scholar 

  9. Shen A, Zhou D, Shen Q et al (2009) The expression of tumor necrosis factor-alpha (TNF-alpha) by the intrathecal injection of lipopolysaccharide in the rat spinal cord. Neurochem Res 34:333–341

    Article  PubMed  CAS  Google Scholar 

  10. Takeuchi O, Hoshino K, Kawai T et al (1999) Differential roles of TLR2 and TLR4 in recognition of gram-negative and gram-positive bacterial cell wall components. Immunity 11:443–451

    Article  PubMed  CAS  Google Scholar 

  11. Jessop DS, Besedovsky HO, del Rey A (2010) New insights into cytokine gene expression in the rat hypothalamus following endotoxin challenge. Neurochem Res 35:909–911

    Article  PubMed  CAS  Google Scholar 

  12. Lund S, Christensen KV, Hedtjarn M et al (2006) The dynamics of the LPS triggered inflammatory response of murine microglia under different culture and in vivo conditions. J Neuroimmunol 180:71–87

    Article  PubMed  CAS  Google Scholar 

  13. Yang S, Zhang D, Yang Z et al (2008) Curcumin protects dopaminergic neuron against LPS induced neurotoxicity in primary rat neuron/glia culture. Neurochem Res 33:2044–2053

    Article  PubMed  CAS  Google Scholar 

  14. Hoshino K, Kaisho T, Iwabe T, Takeuchi O, Akira S (2002) Differential involvement of IFN-beta in Toll-like receptor-stimulated dendritic cell activation. Int Immunol 14:1225–1231

    Article  PubMed  CAS  Google Scholar 

  15. Toshchakov V, Jones BW, Perera PY et al (2002) TLR4, but not TLR2, mediates IFN-beta-induced STAT1alpha/beta-dependent gene expression in macrophages. Nat Immunol 3:392–398

    Article  PubMed  CAS  Google Scholar 

  16. Ha T, Hua F, Li Y et al (2006) Blockade of MyD88 attenuates cardiac hypertrophy and decreases cardiac myocyte apoptosis in pressure overload-induced cardiac hypertrophy in vivo. Am J Physiol Heart Circ Physiol 290:H985–H994

    Article  PubMed  CAS  Google Scholar 

  17. Hua F, Ha T, Ma J et al (2007) Protection against myocardial ischemia/reperfusion injury in TLR4-deficient mice is mediated through a phosphoinositide 3-kinase-dependent mechanism. J Immunol 178:7317–7324

    PubMed  CAS  Google Scholar 

  18. Li YH, Ha TZ, Chen Q, Li CF (2005) Role of MyD88-dependent nuclear factor-kappaB signaling pathway in the development of cardiac hypertrophy in vivo. Zhonghua Yi Xue Za Zhi 85:267–272

    PubMed  CAS  Google Scholar 

  19. Zhai Y, Shen XD, O’Connell R et al (2004) Cutting edge: TLR4 activation mediates liver ischemia/reperfusion inflammatory response via IFN regulatory factor 3-dependent MyD88-independent pathway. J Immunol 173:7115–7119

    PubMed  CAS  Google Scholar 

  20. Kim BS, Lim SW, Li C et al (2005) Ischemia-reperfusion injury activates innate immunity in rat kidneys. Transplantation 79:1370–1377

    Article  PubMed  Google Scholar 

  21. Shimamoto A, Pohlman TH, Shomura S et al (2006) Toll-like receptor 4 mediates lung ischemia-reperfusion injury. Ann Thorac Surg 82:2017–2023

    Article  PubMed  Google Scholar 

  22. Cao CX, Yang QW, Lv FL et al (2007) Reduced cerebral ischemia-reperfusion injury in Toll-like receptor 4 deficient mice. Biochem Biophys Res Commun 353:509–514

    Article  PubMed  CAS  Google Scholar 

  23. Caso JR, Pradillo JM, Hurtado O et al (2007) Toll-like receptor 4 is involved in brain damage and inflammation after experimental stroke. Circulation 115:1599–1608

    Article  PubMed  CAS  Google Scholar 

  24. Schneider A, Martin-Villalba A, Weih F et al (1999) NF-kappaB is activated and promotes cell death in focal cerebral ischemia. Nat Med 5:554–559

    Article  PubMed  CAS  Google Scholar 

  25. Ueda A, Okuda K, Ohno S et al (1994) NF-kappa B and Sp1 regulate transcription of the human monocyte chemoattractant protein-1 gene. J Immunol 153:2052–2063

    PubMed  CAS  Google Scholar 

  26. Grove M, Plumb M (1993) C/EBP, NF-kappa B, and c-Ets family members and transcriptional regulation of the cell-specific and inducible macrophage inflammatory protein 1 alpha immediate-early gene. Mol Cell Biol 13:5276–5289

    PubMed  CAS  Google Scholar 

  27. Widmer U, Manogue KR, Cerami A, Sherry B (1993) Genomic cloning and promoter analysis of macrophage inflammatory protein (MIP)-2, MIP-1 alpha, and MIP-1 beta, members of the chemokine superfamily of proinflammatory cytokines. J Immunol 150:4996–5012

    PubMed  CAS  Google Scholar 

  28. Downes CE, Crack PJ (2010) Neural injury following stroke: are Toll-like receptors the link between the immune system and the CNS? Br J Pharmacol 160:1872–1888

    PubMed  CAS  Google Scholar 

  29. Loskota WJ, Lomax P, Verity MA (1974) A stereotaxic atlas of the Mongolian gerbil brain (Meriones unguiculatus). Ann Arbor Science, Ann Arbor

    Google Scholar 

  30. Watanabe M, Fukaya M, Sakimura K et al (1998) Selective scarcity of NMDA receptor channel subunits in the stratum lucidum (mossy fibre-recipient layer) of the mouse hippocampal CA3 subfield. Eur J Neurosci 10:478–487

    Article  PubMed  CAS  Google Scholar 

  31. Candelario-Jalil E, Alvarez D, Merino N, León OS (2003) Delayed treatment with nimesulide reduces measures of oxidative stress following global ischemic brain injury in gerbils. Neurosci Res 47:245–253

    Article  PubMed  CAS  Google Scholar 

  32. Schmued LC, Hopkins KJ (2000) Fluoro-Jade B: a high affinity fluorescent marker for the localization of neuronal degeneration. Brain Res 874:123–130

    Article  PubMed  CAS  Google Scholar 

  33. Zuany-Amorim C, Hastewell J, Walker C (2002) Toll-like receptors as potential therapeutic targets for multiple diseases. Nat Rev Drug Discov 1:797–807

    Article  PubMed  CAS  Google Scholar 

  34. Khorooshi R, Babcock AA, Owens T (2008) NF-kappaB-driven STAT2 and CCL2 expression in astrocytes in response to brain injury. J Immunol 181:7284–7291

    PubMed  CAS  Google Scholar 

  35. Wu N, Siow YL OK (2009) Induction of hepatic cyclooxygenase-2 by hyperhomocysteinemia via nuclear factor-kappaB activation. Am J Physiol Regul Integr Comp Physiol 297:R1086–R1094

    Article  PubMed  CAS  Google Scholar 

  36. Hyakkoku K, Hamanaka J, Tsuruma K et al (2010) Toll-like receptor 4 (TLR4), but not TLR3 or TLR9, knock-out mice have neuroprotective effects against focal cerebral ischemia. Neuroscience 171:258–267

    Article  PubMed  CAS  Google Scholar 

  37. Maślińska D, Laure-Kamionowska M, Maśliński S (2004) Toll-like receptors in rat brains injured by hypoxic-ischaemia or exposed to staphylococcal alpha-toxin. Folia Neuropathol 42:125–132

    PubMed  Google Scholar 

  38. Oyama J, Blais C Jr, Liu X et al (2004) Reduced myocardial ischemia-reperfusion injury in toll-like receptor 4-deficient mice. Circulation 109:784–789

    Article  PubMed  CAS  Google Scholar 

  39. Wong F, Hull C, Zhande R, Law J, Karsan A (2004) Lipopolysaccharide initiates a TRAF6-mediated endothelial survival signal. Blood 103:4520–4526

    Article  PubMed  CAS  Google Scholar 

  40. Tounai H, Hayakawa N, Kato H, Araki T (2007) Immunohistochemical study on distribution of NF-kappaB and p53 in gerbil hippocampus after transient cerebral ischemia: effect of pitavastatin. Metab Brain Dis 22:89–104

    Article  PubMed  CAS  Google Scholar 

  41. Crack PJ, Taylor JM, Ali U, Mansell A, Hertzog PJ (2006) Potential contribution of NF-kappaB in neuronal cell death in the glutathione peroxidase-1 knockout mouse in response to ischemia-reperfusion injury. Stroke 37(6):1533–1538

    Article  PubMed  CAS  Google Scholar 

  42. Blanco AM, Vallés SL, Pascual M, Guerri C (2005) Involvement of TLR4/type I IL-1 receptor signaling in the induction of inflammatory mediators and cell death induced by ethanol in cultured astrocytes. J Immunol 175:6893–6899

    PubMed  CAS  Google Scholar 

  43. Farina C, Aloisi F, Meinl E (2007) Astrocytes are active players in cerebral innate immunity. Trends Immunol 28:138–145

    Article  PubMed  CAS  Google Scholar 

  44. Kielian T (2006) Toll-like receptors in central nervous system glial inflammation and homeostasis. J Neurosci Res 83:711–730

    Article  PubMed  CAS  Google Scholar 

  45. Okun E, Griffioen KJ, Lathia JD et al (2009) Toll-like receptors in neurodegeneration. Brain Res Rev 59:278–292

    Article  PubMed  CAS  Google Scholar 

  46. Tang SC, Arumugam TV, Xu X et al (2007) Pivotal role for neuronal Toll-like receptors in ischemic brain injury and functional deficits. Proc Natl Acad Sci USA 104:13798–13803

    Article  PubMed  CAS  Google Scholar 

  47. Gabriel C, Justicia C, Camins A, Planas AM (1999) Activation of nuclear factor-kappaB in the rat brain after transient focal ischemia. Brain Res Mol Brain Res 65:61–69

    Article  PubMed  CAS  Google Scholar 

  48. Mori T, Tateishi N, Kagamiishi Y et al (2004) Attenuation of a delayed increase in the extracellular glutamate level in the peri-infarct area following focal cerebral ischemia by a novel agent ONO-2506. Neurochem Int 45:381–387

    Article  PubMed  CAS  Google Scholar 

  49. Tateishi N, Mori T, Kagamiishi Y et al (2002) Astrocytic activation and delayed infarct expansion after permanent focal ischemia in rats. Part II: suppression of astrocytic activation by a novel agent (R)-(-)-2-propyloctanoic acid (ONO-2506) leads to mitigation of delayed infarct expansion and early improvement of neurologic deficits. J Cereb Blood Flow Metab 22:723–734

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Mr. Seok Han, Mr. Seung Uk Lee and Mrs. Hyun Sook Kim for their technical help in this study, and the Korean Basic Science Institute Chuncheon Center for technical assistance with the confocal image analyses (LSM 510 META NLO). This research was supported by the Regional Core Research Program funded by the Korea Ministry of Education, Science and Technology (Medical and Bio-material Research Center), and by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2010-0009165).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to In Koo Hwang or Moo-Ho Won.

Additional information

Ki-Yeon Yoo and Dae Young Yoo contributed equally to this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoo, KY., Yoo, D.Y., Hwang, I.K. et al. Time-Course Alterations of Toll-Like Receptor 4 and NF-κB p65, and Their Co-Expression in the Gerbil Hippocampal CA1 Region After Transient Cerebral Ischemia. Neurochem Res 36, 2417–2426 (2011). https://doi.org/10.1007/s11064-011-0569-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-011-0569-0

Keywords

Navigation