Skip to main content
Log in

Interleukin-1β Inhibits Voltage-Gated Sodium Currents in a Time- and Dose-Dependent Manner in Cortical Neurons

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Interleukin-1β (IL-1β) is a multifunctional proinflammatory cytokine that plays a key role in the injuries and diseases of the central nervous system (CNS). A voltage-gated Na+ channel is essential for the excitability and electrical properties of neurons. However, it is not known whether IL-1β directly affects the central Na+ channels. In the present study, we examined the effects of IL-1β on Na+ currents in cultured cortical neurons using patch-clamp recording. Our results showed that IL-1β suppressed Na+ currents through its receptor in a time- and dose-dependent manner, but did not alter the voltage-dependent activation and inactivation. PKC and then p38 MAPK were involved in this inhibition. The spike amplitude was also inhibited by IL-1β in the doses that decreased the Na+ currents. Our findings revealed the inhibition of chronic IL-1β treatment on voltage-gated Na+ channels in the CNS, and showed that the action potential (AP) amplitude was reduced by IL-1β due to a decrease of Na+ currents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Fogal B, Hewett SJ (2008) Interleukin-1β: a bridge between inflammation and excitotoxicity? J Neurochem 106:1–23

    Article  PubMed  CAS  Google Scholar 

  2. Rijkers K, Majoie HJ, Hoogland G, Kenis G, De Baets M, Vles JS (2009) The role of interleukin-1 in seizures and epilepsy: a critical review. Exp Neurol 216:258–271

    Article  PubMed  CAS  Google Scholar 

  3. Takeda M, Kitagawa J, Takahashi M, Matsumoto S (2008) Activation of interleukin-1β receptor suppresses the voltage-gated potassium currents in the small-diameter trigeminal ganglion neurons following peripheral inflammation. Pain 139:594–602

    Article  PubMed  CAS  Google Scholar 

  4. Zhang R, Yamada J, Hayashi Y, Wu Z, Koyama S, Nakanishi H (2008) Inhibition of NMDA-induced outward currents by interleukin-1β in hippocampal neurons. Biochem Biophy Res Co 372:816–820

    Article  CAS  Google Scholar 

  5. Zhou C, Tai C, Ye HH, Ren X, Chen JG, Wang SQ, Chai Z (2006) Interleukin-1β downregulates the L-type Ca2+ channel activity by depressing the expression of channel protein in cortical neurons. J Cell Physiol 206:799–806

    Article  PubMed  CAS  Google Scholar 

  6. Zhou C, Ye HH, Wang SQ, Chan Z (2006) Interleukin-1β regulation of N-type Ca2+ channels in cortical neurons. Neurosci Lett 403:181–185

    Article  PubMed  CAS  Google Scholar 

  7. Goldfarb M, Schoorlemmer J, Williams A, Diwakar S, Wang Q, Huang X, Giza J, Tchechik D, Kelley K, Vega A, Matthews G, Rossi P, Ornitz DM, D’Angelo E (2007) Fibroblast growth factor homologous factors control neuronal excitability through modulation of voltage-gated sodium channels. Neuron 55:449–463

    Article  PubMed  CAS  Google Scholar 

  8. Rush AM, Dib-Hajj SD, Liu S, Cummins TR, Black JA, Waxman SG (2006) A single sodium channel mutation produces hyper-or hypoexcitability in different types of neurons. Proc Natl Acad Sci 103:8245–8250

    Article  PubMed  CAS  Google Scholar 

  9. Hains BC, Saab CY, Klein JP, Craner MJ, Waxman SG (2004) Altered sodium channel expression in second-order spinal sensory neurons contributes to pain after peripheral nerve injury. J Neurosci 24:4832–4839

    Article  PubMed  CAS  Google Scholar 

  10. Amir R, Argoff CE, Bennett GJ et al (2006) The role of sodium channels in chronic inflammatory and neuropathic pain. J Pain 7:S1–S29

    Article  PubMed  CAS  Google Scholar 

  11. Momin A, Wood JN (2008) Sensory neuron voltage-gated sodium channels as analgesic drug targets. Curr Opin Neurol 18:383–388

    CAS  Google Scholar 

  12. Davis TH, Chen C, Isom LL (2004) Sodium channel β1 subunits promote neurite outgrowth in cerebellar granule neurons. J Biol Chem 279:51424–51432

    Article  PubMed  CAS  Google Scholar 

  13. O’Malley HA, Shreiner AB, Chen GH, Huffnagle GB, Isom LL (2009) Loss of Na+ channel β2 subunits is neuroprotective in a mouse model of multiple sclerosis. Mol Cell Neurosci 40:143–155

    Article  PubMed  Google Scholar 

  14. Yao C, Williams AJ, Hartings JA, Lu XCM, Tortella FC, Dave JR (2005) Down-regulation of the sodium channel NaV1.1 α-subunit following focal ischemic brain injury in rats: In situ hybridization and immunohistochemical analysis. Life Sci 77:1116–1129

    Article  PubMed  CAS  Google Scholar 

  15. Liu L, Yang TM, Liedtke W, Simon SA (2006) Chronic IL-1β potentiates voltage-dependent sodium currents in trigeminal nociceptive neurons. J Neurophysiol 95:1478–1490

    Article  PubMed  CAS  Google Scholar 

  16. Plata-Salamán CR, ffrench-Mullen JMH (1992) Interleukin-1β depresses calcium currents in CA1 hippocampal neurons at pathophysiological concentration. Brain Res 29:221–223

    Google Scholar 

  17. Roux J, Kawakatsu H, Gartland B, Pespeni M, Sheppard D, Matthay MA, Canessa CM, Pittet J (2005) Interleukin-1β decreases expression of the epithelial sodium channel α-subunit in alveolar epithelial cell via a p38 MAPK-dependent signaling pathway. J Biol Chem 280:18579–18589

    Article  PubMed  CAS  Google Scholar 

  18. Li W, Hou L, Hua Z, Wang X (2004) Interleukin-1β induces β-calcitonin gene-related peptide secretion in human type II alveolar epithelial cells. FASEB J 18(13):1603–1605

    PubMed  CAS  Google Scholar 

  19. Li Y, Liu L, Barger SW, Griffin WST (2003) Interleukin-1 mediates pathological effects of microglia on tau phosphorylation and on synaptophysin synthesis in cortical neurons through a p38-MAPK pathway. J Neurosci 23(5):1605–1611

    PubMed  CAS  Google Scholar 

  20. Viviani B, Bartesaghi S, Gardoni F, Vezzani A, Behrens MM, Bartfai T, Binaglia M, Corsini M, Luca D, Galli CL, Marinovich M (2003) Interleukin-1β enhances NMDA receptor-mediated intracellular calcium increase through activation of the src family of kinases. J Neurosci 23(25):8692–8700

    PubMed  CAS  Google Scholar 

  21. Li Y, Liu L, Kang J, Sheng JG, Barger SW, Mark RE, Griffin WS (2000) Neuronal-glial interactions mediated by interleukin-1 enhances neuronal acetycholinesterase activity and mRNA expression. J Neurosci 20:149–155

    PubMed  Google Scholar 

  22. Strijbos P, Rothwell NJ (1995) Interleukin-1β attenuates excitatory amino acid-induced neurodegeneration in vitro: Involvement of nerve growth factor. J Neurosci 15:3468–3474

    PubMed  CAS  Google Scholar 

  23. Carlson NG, Wieggel WA, Chen J, Bacchi A, Rogers SW, Gahring LC (1999) Inflammatory cytokines IL-1α, IL-1β, IL-6 and TNF-α impart neuroprotection to an excitotoxin through distinct pathways. J Immunol 163:3963–3968

    PubMed  CAS  Google Scholar 

  24. MacManus A, Ramsden M, Murray M, Henderson Z, Pearson HA, Campbell VA (2000) Enhancement of 45Ca2+ influx and voltage-dependent Ca2+ channel activity by β-amyloid-(1–40) in rat cortical synaptosomes and cultured cortical neurons. J Biol Chem 275:4713–4718

    Article  PubMed  CAS  Google Scholar 

  25. Plata-Salamán CR, ffrench-Mullen JMH (1994) Interleukin-1β inhibits Ca2+ channel current in hippocampal neurons through protein kinase C. Eur J Pharmacol 266:1–10

    Article  PubMed  Google Scholar 

  26. Diem R, Hobom M, Grötsch P, Kramer B, Bähr M (2003) Interleukin-1β protects neurons via the interleukin-1 (IL-1) receptor-mediated Akt pathway and by IL-1 receptor-independent decrease of transmembrane currents in vivo. Mol Cell Neurosci 22:487–500

    Article  PubMed  CAS  Google Scholar 

  27. Coyle JT, Puttfarcken P (1993) Oxidative stress, glutamate, and neurodegenerative disorders. Science 262:689–695

    Article  PubMed  CAS  Google Scholar 

  28. Jabaudon D, Scanziani M, Gähwiler BH, Gerber U (2000) Acute decrease in net glutamate uptake during energy deprivation. Proc Natl Acad Sci 97:5610–5615

    Article  PubMed  CAS  Google Scholar 

  29. Nishizawa Y (2001) Glutamate release and neuronal damage in ischemia. Life Sci 69:369–381

    Article  PubMed  CAS  Google Scholar 

  30. Murray CA, McGahon B, McBennett S, Lynch MA (1997) Interleukin-1β inhibits glutamate release in hippocampus of young, but not aged, rats. Neurobiol Aging 18:343–348

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Key Basis Research Program of Ministry of Science and Technology of China (973 grant number: 2006CB504105 and 2009CB941301) and National Natural Science Foundation of China (grant number: 30670500 and 30871287).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chen Zhou or Zhen Chai.

Additional information

Chen Zhou and Cui Qi contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, C., Qi, C., Zhao, J. et al. Interleukin-1β Inhibits Voltage-Gated Sodium Currents in a Time- and Dose-Dependent Manner in Cortical Neurons. Neurochem Res 36, 1116–1123 (2011). https://doi.org/10.1007/s11064-011-0456-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-011-0456-8

Keywords

Navigation