Skip to main content

Advertisement

Log in

Hypomyelination Phenotype Caused by Impaired Differentiation of Oligodendrocytes in Emx1-cre Mediated Cdk5 Conditional Knockout Mice

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Cyclin-dependent kinase 5 (Cdk5) plays a pivotal role in neuronal migration and differentiation, and in axonal elongation. Although many studies have been conducted to analyze neuronal functions of Cdk5, its kinase activity has also been reported during oligodendrocyte differentiation, which suggests Cdk5 may play an important role in oligodendrocytes. Here, we describe a hypomyelination phenotype observed in Emx1-cre mediated Cdk5 conditional knockout (cKO) mice (Emx1-cKO), in which the Cdk5 gene was deleted in neurons, astrocytes and oligodendrocyte -lineage cells. In contrast, the Cdk5 gene in CaMKII cKO mice was deleted only in neurons. Because the development of mature oligodendrocytes from oligodendrocyte precursor cells is a complex process, we performed in situ hybridization using markers for the oligodendrocyte precursor cell and for the differentiated oligodendrocyte. Our results indicate that hypomyelination in Emx1-cKO is due to the impaired differentiation of oligodendrocytes, rather than to the proliferation or migration of their precursors. The present study confirmed the in vivo role of Cdk5 in oligodendrocyte differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Dhavan R, Tsai LH (2001) A decade of Cdk5. Nat Rev Mol Cell Biol 2:749–759

    Article  PubMed  CAS  Google Scholar 

  2. Smith D (2003) Cdk5 in neuroskeletal dynamics. Neurosignals 12:239–251

    Article  PubMed  CAS  Google Scholar 

  3. Tanaka T, Veeranna, Ohshima T et al (2001) Neuronal cyclin-dependent kinase 5 activity is critical for survival. Neuroscience 21:550–558

    PubMed  CAS  Google Scholar 

  4. Grant P, Sharma P, Pant HC et al (2001) Cyclin-dependent protein kinase 5 (Cdk5) and the regulation of neurofilament metabolism. Eur J Nerurosci 268:1534–1546

    CAS  Google Scholar 

  5. Wu DC, Yu YP, Lee NTK et al (2000) The expression of Cdk5, p35, p39, and Cdk5 kinase activity in developing, adult, and aged rat brains. Neurochem Res 25:923–930

    Article  PubMed  CAS  Google Scholar 

  6. Ohshima T, Ward JM, Huh CG et al (1996) Targeted disruption of the cyclin-dependent kinase 5 gene results in abnormal corticogenesis, neuronal pathology and perinatal death. Proc Natl Acad Sci USA 93:11173–11178

    Article  PubMed  CAS  Google Scholar 

  7. Ko J, Humbert S, Brorson T et al (2001) p35 and p39 are essential for cyclin-dependent kinase 5 function during neurodevelopment. J Neurosci 21:6758–6771

    PubMed  CAS  Google Scholar 

  8. Gilmore E, Ohshima T, Goffinet A et al (1998) Cyclin-dependent kinase 5-deficient mice demonstrate novel developmental arrest in cerebral cortex. J Neurosci 18:6370–6377

    PubMed  CAS  Google Scholar 

  9. Paglini G, Caceres A (2001) The role of the Cdk5-p35 kinase in neuronal development. Eur J Biochem 268:1528–1533

    Article  PubMed  CAS  Google Scholar 

  10. Delalle I, Bhide PG, Caviness VS et al (1997) Temporal and spatial patterns of expression of p35, a regulatory subunit of cyclin-dependent kinase 5, in the nervous system of the mouse. J Neurocytol 26:283–296

    Article  PubMed  CAS  Google Scholar 

  11. Lee JC, Mayer-Proschel M, Rao MS et al (2000) Gliogenesis in the central nervous system. Glia 30:105–121

    Article  PubMed  CAS  Google Scholar 

  12. Baumann N, Pham-Dinh D (2001) Biology of oligodendrocyte and myelin in the mammalian central nervous system. Physiol Rev 81:871–928

    PubMed  CAS  Google Scholar 

  13. Dana M, McTigue DM, Richa B et al (2008) The life, death, and replacement of oligodendrocytes in the adult CNS. J Neurochem 107:1–19

    Article  Google Scholar 

  14. de Castro F, Bribián A (2005) The molecular orchestra of the migration of oligodendrocyte precursors during development. Brain Res Rev 49:227–241

    Article  PubMed  Google Scholar 

  15. Bradl M, Lassmann H (2010) Oligodendrocytes: biology and pathology. Acta Neuropathol 119:37–53

    Article  PubMed  Google Scholar 

  16. Richardson WD, Kessaris N, Pringle N (2006) Oligodendrocyte wars. Nat Rev Neurosci 7:11–18

    Article  PubMed  CAS  Google Scholar 

  17. Tang XM, Strocchi P, Cambi F (1998) Changes in the activity of cdk2 and cdk5 accompany differentiation of rat primary oligodendrocytes. J Cell Biochem 68:128–137

    Article  PubMed  CAS  Google Scholar 

  18. Miyamoto Y, Yamauchi J, Chan JR et al (2007) Cdk5 regulates differentiation of oligodendrocyte precursor cells through the direct phosphorylation of paxillin. J Cell Sci 120:4355–4366

    Article  PubMed  CAS  Google Scholar 

  19. Takahashi S, Ohshima T, Hirasawa M et al (2010) Conditional deletion of neuronal cyclin-dependent kinase 5 in developing forebrain results in microglial activation and neurodegeneration. Am J Pathol 176:320–329

    Article  PubMed  CAS  Google Scholar 

  20. Gorski JA, Talley T, Qiu M (2002) Cortical excitatory neurons and glia, but not GABAergic neurons, are produced in the Emxl-expressing lineage. J Neurosci 22(15):6309–6314

    Google Scholar 

  21. Hirasawa M, Ohshima T, Takahashi S et al (2004) Perinatal abrogation of Cdk5 expression in brain results in neuronal migration defects. Proc Natl Acad Sci USA 101:6249–6254

    Article  PubMed  CAS  Google Scholar 

  22. Iwasato T, Datwani A, Wolf AM et al (2000) Cortex-restricted disruption of NMDAR1 impairs neuronal patterns in the barrel cortex. Nature 406:726–731

    Article  PubMed  CAS  Google Scholar 

  23. Ohshima T, Hirasawa M, Tabata H et al (2007) Cdk5 is required for multipolar-to-bipolar transition during radial neuronal migration and proper dendrite development of pyramidal neurons in the cerebral cortex. Development 134:2273–2282

    Article  PubMed  CAS  Google Scholar 

  24. Araya R, Kudo M, Kawano M et al (2008) BMP signaling through BMPRIA in astrocytes is essential for proper cerebral angiogenesis and formation of the blood-brain-barrier. Mol Cell Neurosci 38:417–430

    Article  PubMed  CAS  Google Scholar 

  25. Billon N, Jolicoeur C, Tokumoto Y et al (2002) Normal timing of oligodendrocyte development depends on thyroid hormone receptor alpha 1 (TR#1). EMBO J 21:6452–6460

    Article  PubMed  CAS  Google Scholar 

  26. Nancy EJ, Berman J, Johnson K et al (1997) Early generation of glia in the intermediate zone of the developing cerebral cortex. Dev Brain Res 101:149–164

    Article  Google Scholar 

  27. Miller RH (2002) Regulation of oligodendrocyte development in the vertebrate CNS. Prog Neurobiol 67:451–467

    Article  PubMed  CAS  Google Scholar 

  28. Ventura RE, Goldman JE (2006) Telencephalic oligodendrocytes battle it out. Nat Neursci 9:153–154

    Article  CAS  Google Scholar 

  29. Rosales JL, Lee KY (2006) Extraneuronal roles of cyclin-dependent kinase 5. Bioessays 28:1023–1034

    Article  PubMed  CAS  Google Scholar 

  30. Rowitch DH (2004) Glial specification in the vertebrate neural tube. Nat Rev Neurosci 5:409–419

    Article  PubMed  CAS  Google Scholar 

  31. Johansson JU, Lilja L, Chen XL et al (2005) Cyclin-dependent kinase 5 activators p35 and p39 facilitate formation of functional synapses. Mol Brain Res 138:215–227

    Article  PubMed  CAS  Google Scholar 

  32. Dhariwala FA, Rajadhyaksha MS (2008) An unusual member of the Cdk family: Cdk5. Cell Mol Neurobiol 28:351–369

    Article  PubMed  CAS  Google Scholar 

  33. Gao C, Negash S, Wang HS (2001) Cdk5 mediates changes in morphology and promotes apoptosis of astrocytoma cells in response to heat shock. J Cell Sci 114:1145–1154

    PubMed  CAS  Google Scholar 

  34. Mikoshiba K, Takamatsu K, Tsukada Y (1985) Altered myelinated fiber trajectory at various postnatal days in the cerebral cortex of reeler mice by immunohistochemical stain with MBP antiserum. Dev Neurosci 4:199–205

    Article  Google Scholar 

  35. Aikawa H, Nonaka I, Woo M et al (1988) Shaking rat Kawasaki (SRK): a new neurological mutant rat in the Wistar strain. Acta Neuropathol 76(4):366–372

    Article  PubMed  CAS  Google Scholar 

  36. Kikkawa S, Yamamoto T, Misaki K et al (2003) Missplicing resulting from a short deletion in the reelin gene causes reeler-like neuronal disorders in the mutant shaking rat Kawasaki. J Comp Neurol 463(3):303–315

    Article  PubMed  CAS  Google Scholar 

  37. Turner CE (2000) Paxillin interactions. J Cell Sci 113:4139–4140

    PubMed  CAS  Google Scholar 

  38. Wegner M (2008) A matter of identity: transcriptional control in oligodendrocytes. J Mol Neurosci 35:3–12

    Article  PubMed  CAS  Google Scholar 

  39. Nicolay DJ, Doucette JR, Nazarali AJ (2007) Transcriptional control of oligodendrogenesis. Glia 55:1287–1299

    Article  PubMed  Google Scholar 

  40. Zhao XH, He XL, Han XL et al (2010) MicroRNA-mediated control of oligodendrocytes differentiation. Neuron 65:612–626

    Article  PubMed  CAS  Google Scholar 

  41. Dugas JC, Cuellar TL, Scholze A et al (2010) Dicer1 and miR-219 are required for normal oligodendrocyte differentiation and myelination. Neuron 65:597–611

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We wish to thank Drs. Itohara and Iwasato for providing the Emx1-cre mice, and Drs. Dragatsis and Zeitlin for providing the CamKII-cre mice. We would also like to thank Dr. Elias Utreras and Eric Contreras for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshio Ohshima.

Additional information

Special Issue: In Honor of Dr. Mikoshiba.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, X., Takahashi, S., Suzuki, H. et al. Hypomyelination Phenotype Caused by Impaired Differentiation of Oligodendrocytes in Emx1-cre Mediated Cdk5 Conditional Knockout Mice. Neurochem Res 36, 1293–1303 (2011). https://doi.org/10.1007/s11064-010-0391-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-010-0391-0

Keywords

Navigation