Skip to main content

Advertisement

Log in

KPC1 Expression and Essential Role After Acute Spinal Cord Injury in Adult Rat

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

KPC1 (Kip1 ubiquitylation-promoting complex 1) is the catalytic subunit of the ubiquitin ligase KPC, which regulates the degradation of the cyclin-dependent kinase inhibitor p27kip1 at the G1 phase of the cell cycle. To elucidate the expression and role of KPC1 in nervous system lesion and repair, we performed an acute spinal cord contusion injury (SCI) model in adult rats. Western blot analysis showed a significant up-regulation of KPC1 and a concomitant down-regulation of p27kip1 following spinal injury. Immunohistochemistry and immunofluorescence revealed wide expression of KPC1 in the spinal cord, including expression in neurons and astrocytes. After injury, KPC1 expression was increased predominantly in astrocytes, which highly expressed PCNA, a marker for proliferating cells. Co-immunoprecipitation demonstrated increased interactions between p27kip1 and KPC1 4 days after injury. To understand whether KPC1 plays a role in astrocyte proliferation, we applied LPS to induce astrocyte proliferation in vitro. Western blot analysis demonstrated that p27kip1 expression was negatively correlated with KPC1 expression following LPS stimulation. Immunofluorescence analysis showed subcellular localizations of p27kip1 and KPC1 were also changed following the stimulation of astrocytes with LPS. These results suggest that KPC1 is related to the down-regulation of p27kip1; this event may be involved in the proliferation of astrocytes after SCI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Becker EB, Bonni A (2004) Cell cycle regulation of neuronal apoptosis in development and disease. Prog Neurobiol 72:1–25

    Article  CAS  PubMed  Google Scholar 

  2. Blight AR (1985) Delayed demyelination and macrophage invasion: a candidate for secondary cell damage in spinal cord injury. Cent Nerv Syst Trauma 2:299–315

    CAS  PubMed  Google Scholar 

  3. Bloom J, Pagano M (2003) Deregulated degradation of the cdk inhibitor p27 and malignant transformation. Semin Cancer Biol 13:41–47

    Article  CAS  PubMed  Google Scholar 

  4. Brahmachari S, Fung YK, Pahan K (2006) Induction of glial fibrillary acidic protein expression in astrocytes by nitric oxide. J Neurosci 26:4930–4939

    Article  CAS  PubMed  Google Scholar 

  5. Byrnes KR, Stoica BA, Fricke S et al (2007) Cell cycle activation contributes to post-mitotic cell death and secondary damage after spinal cord injury. Brain 130:2977–2992

    Article  PubMed  Google Scholar 

  6. Carrano AC, Eytan E, Hershko A et al (1999) SKP2 is required for ubiquitin-mediated degradation of the CDK inhibitor p27. Nat Cell Biol 1:193–199

    Article  CAS  PubMed  Google Scholar 

  7. Coats S, Flanagan WM, Nourse J et al (1996) Requirement of p27Kip1 for restriction point control of the fibroblast cell cycle. Science 272:877–880

    Article  CAS  PubMed  Google Scholar 

  8. Codeluppi S, Svensson CI, Hefferan MPF et al (2009) The Rheb-mTOR pathway is upregulated in reactive astrocytes of the injured spinal cord. J Neurosci 29:1093–1104

    Article  CAS  PubMed  Google Scholar 

  9. Davies SJ, Field PM, Raisman G (1996) Regeneration of cut adult axons fails even in the presence of continuous aligned glial pathways. Exp Neurol 142:203–216

    Article  CAS  PubMed  Google Scholar 

  10. Di Giovanni S, Movsesyan V, Ahmed F et al (2005) Cell cycle inhibition provides neuroprotection and reduces glial proliferation and scar formation after traumatic brain injury. Proc Natl Acad Sci U S A 102:8333–8338

    Article  CAS  PubMed  Google Scholar 

  11. Dumont RJ, Okonkwo DO, Verma S et al (2001) Acute spinal cord injury, part I: pathophysiologic mechanisms. Clin Neuropharmacol 24:254–264

    Article  CAS  PubMed  Google Scholar 

  12. Fawcett JW (1997) Astrocytic and neuronal factors affecting axon regeneration in the damaged central nervous system. Cell Tissue Res 290:371–377

    Article  CAS  PubMed  Google Scholar 

  13. Fero ML, Rivkin M, Tasch M et al (1996) A syndrome of multiorgan hyperplasia with features of gigantism, tumorigenesis, and female sterility in p27(Kip1)-deficient mice. Cell 85:733–744

    Article  CAS  PubMed  Google Scholar 

  14. Fillies T, Woltering M, Brandt B et al (2007) Cell cycle regulating proteins p21 and p27 in prognosis of oral squamous cell carcinomas. Oncol Rep 17:355–359

    CAS  PubMed  Google Scholar 

  15. Go HS, Shin CY, Lee SH et al (2009) Increased proliferation and gliogenesis of cultured rat neural progenitor cells by lipopolysaccharide-stimulated astrocytes. Neuroimmunomodulation 16:365–376

    Article  CAS  PubMed  Google Scholar 

  16. Gruner JA (1992) A monitored contusion model of spinal cord injury in the rat. J Neurotrauma 9:123–126 discussion 126–128

    Article  CAS  PubMed  Google Scholar 

  17. Hengst L, Reed SI (1996) Translational control of p27Kip1 accumulation during the cell cycle. Science 271:1861–1864

    Article  CAS  PubMed  Google Scholar 

  18. Kamura T, Hara T, Matsumoto M et al (2004) Cytoplasmic ubiquitin ligase KPC regulates proteolysis of p27(Kip1) at G1 phase. Nat Cell Biol 6:1229–1235

    Article  CAS  PubMed  Google Scholar 

  19. Kotoshiba S, Kamura T, Hara T et al (2005) Molecular dissection of the interaction between p27 and Kip1 ubiquitylation-promoting complex, the ubiquitin ligase that regulates proteolysis of p27 in G1 phase. J Biol Chem 280:17694–17700

    Article  CAS  PubMed  Google Scholar 

  20. Kwon BK, Tetzlaff W, Grauer JN et al (2004) Pathophysiology and pharmacologic treatment of acute spinal cord injury. Spine J 4:451–464

    Article  PubMed  Google Scholar 

  21. McDonald JW, Sadowsky C (2002) Spinal-cord injury. Lancet 359:417–425

    Article  PubMed  Google Scholar 

  22. McGraw J, Hiebert GW, Steeves JD (2001) Modulating astrogliosis after neurotrauma. J Neurosci Res 63:109–115

    Article  CAS  PubMed  Google Scholar 

  23. McMillian MK, Thai L, Hong JS et al (1994) Brain injury in a dish: a model for reactive gliosis. Trends Neurosci 17:138–142

    Article  CAS  PubMed  Google Scholar 

  24. Minamishima YA, Nakayama K (2002) Recovery of liver mass without proliferation of hepatocytes after partial hepatectomy in Skp2-deficient mice. Cancer Res 62:995–999

    CAS  PubMed  Google Scholar 

  25. Morris GF, Mathews MB (1989) Regulation of proliferating cell nuclear antigen during the cell cycle. J Biol Chem 264:13856–13864

    CAS  PubMed  Google Scholar 

  26. Nakayama K, Ishida N, Shirane M et al (1996) Mice lacking p27(Kip1) display increased body size, multiple organ hyperplasia, retinal dysplasia, and pituitary tumors. Cell 85:707–720

    Article  CAS  PubMed  Google Scholar 

  27. Nieto-Sampedro M (1999) Neurite outgrowth inhibitors in gliotic tissue. Adv Exp Med Biol 468:207–224

    CAS  PubMed  Google Scholar 

  28. Pagano M, Tam SW, Theodoras AM et al (1995) Role of the ubiquitin-proteasome pathway in regulating abundance of the cyclin-dependent kinase inhibitor p27. Science 269:682–685

    Article  CAS  PubMed  Google Scholar 

  29. Raghupathi R (2004) Cell death mechanisms following traumatic brain injury. Brain Pathol 14:215–222

    Article  PubMed  Google Scholar 

  30. Ridet JL, Malhotra SK, Privat A et al (1997) Reactive astrocytes: cellular and molecular cues to biological function. Trends Neurosci 20:570–577

    Article  CAS  PubMed  Google Scholar 

  31. Sekhon LH, Fehlings MG (2001) Epidemiology, demographics, and pathophysiology of acute spinal cord injury. Spine (Phila Pa 1976) 26:S2–S12

    CAS  Google Scholar 

  32. Sgambato A, Cittadini A, Faraglia B et al (2000) Multiple functions of p27(Kip1) and its alterations in tumor cells: a review. J Cell Physiol 183:18–27

    Article  CAS  PubMed  Google Scholar 

  33. Shen A, Liu Y, Zhao J et al (2008) Temporal-spatial expressions of p27kip1 and its phosphorylation on Serine-10 after acute spinal cord injury in adult rat: Implications for post-traumatic glial proliferation. Neurochem Int 52:1266–1275

    Article  CAS  PubMed  Google Scholar 

  34. Shirane M, Harumiya Y, Ishida N et al (1999) Down-regulation of p27(Kip1) by two mechanisms, ubiquitin-mediated degradation and proteolytic processing. J Biol Chem 274:13886–13893

    Article  CAS  PubMed  Google Scholar 

  35. Signoretti S, Di Marcotullio L, Richardson A et al (2002) Oncogenic role of the ubiquitin ligase subunit Skp2 in human breast cancer. J Clin Invest 110:633–641

    CAS  PubMed  Google Scholar 

  36. Silver J, Miller JH (2004) Regeneration beyond the glial scar. Nat Rev Neurosci 5:146–156

    Article  CAS  PubMed  Google Scholar 

  37. Sun LL, Cheng C, Liu HO et al (2007) Src suppressed C kinase substrate regulates the lipopolysaccharide-induced TNF-alpha biosynthesis in rat astrocytes. J Mol Neurosci 32:16–24

    Article  CAS  PubMed  Google Scholar 

  38. Tator CH, Fehlings MG (1991) Review of the secondary injury theory of acute spinal cord trauma with emphasis on vascular mechanisms. J Neurosurg 75:15–26

    Article  CAS  PubMed  Google Scholar 

  39. Tawfik VL, Lacroix-Fralish ML, Bercury KK et al (2006) Induction of astrocyte differentiation by propentofylline increases glutamate transporter expression in vitro: heterogeneity of the quiescent phenotype. Glia 54:193–203

    Article  PubMed  Google Scholar 

  40. Wyndaele M, Wyndaele JJ (2006) Incidence, prevalence and epidemiology of spinal cord injury: what learns a worldwide literature survey? Spinal Cord 44:523–529

    Article  CAS  PubMed  Google Scholar 

  41. Young W (1993) Secondary injury mechanisms in acute spinal cord injury. J Emerg Med 11(Suppl 1):13–22

    PubMed  Google Scholar 

  42. Tomoda K, Kubota Y, Kato J (1999) Degradation of the cyclin-dependent-kinase inhibitor p27Kip1 is instigated by Jab1. Nature 398:160–165

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 30770488, No. 30870320, No. 31070723, No. 81071487 and No. 81070275), Natural Science Foundation of Jiangsu Province (No. BK2009156, No. BK2009157 and No. BK2009161; BK2009169), the 333 high-level personnel training project of Jiangsu Province (No. BRA2010137) and the Natural Science Foundation of Zhejiang Province (Y2090545).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Aiguo Shen or Honglin Teng.

Additional information

Jian Zhao and Shuangwei Zhang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, J., Zhang, S., Wu, X. et al. KPC1 Expression and Essential Role After Acute Spinal Cord Injury in Adult Rat. Neurochem Res 36, 549–558 (2011). https://doi.org/10.1007/s11064-010-0377-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-010-0377-y

Keywords

Navigation