Skip to main content
Log in

Neurofibromin and Amyloid Precursor Protein Expression in Dopamine D3 Receptor Knock-Out Mice Brains

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Recently, it has been proposed that neurofibromin (NF1) forms a binding complex with amyloid precursor protein (APP) that interacts with the dopamine D3 receptor (D3R). In the present study we investigated whether the absence of the D3R is correlated to modifications in the expression of both NF1 and APP. Quantitative real-time PCR analyses of both transcripts showed that NF1 mRNA levels were significantly reduced whereas APP levels were strikingly increased in D3R knock-out (D3R KO) as compared to wild type (WT) mice brains. Western blot analyses using mice whole brains produced comparable results with those obtained by mRNA measurements. Moreover, immunohistochemical analyses revealed a similar brain regional distribution of APP protein in the hippocampus, in the cerebral and cerebellar cortex of D3R KO mice. Conversely, hippocampal NF1 immunoreactivity did not seem to be affected by the absence of D3Rs. Further analyses confirmed that regional NF1 protein expression in the hippocampus was not affected by the absence of the D3R, whereas APP levels were still increased in this specific brain region. In conclusion, these results show the existence of a correlation among the D3R, NF1 and APP in mice brains and thus show the regional-specific regulation of NF1 in brains of D3R KO, which may contribute to gain insights into the comprehension of novel underlying mechanisms that regulate brain function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Missale C, Nash SR, Robinson SW et al (1998) Dopamine receptors: from structure to function. Physiol Rev 78:189–225

    CAS  PubMed  Google Scholar 

  2. Sokoloff P, Giros B, Martres MP, Bouthenet ML et al (1990) Molecular cloning and characterization of a novel dopamine receptor (D3) as a target for neuroleptics. Nature 347:146–151

    Article  CAS  PubMed  Google Scholar 

  3. Donarum EA, Halperin RF, Stephan DA et al (2006) Cognitive dysfunction in NF1 knock-out mice may result from altered vesicular trafficking of APP/DRD3 complex. BMC Neurosci 7:20–31

    Article  Google Scholar 

  4. Ozonoff S (1999) Cognitive impairment in neurofibromatosis type I. Am J Med Genet 89:45–52

    Article  CAS  PubMed  Google Scholar 

  5. Feldkamp MM, Angelov L, Guha A (1999) Neurofibromatosis type I peripheral nerve tumors: abberant activation of the Ras pathway. Surg Neurol 51:211–218

    Article  CAS  PubMed  Google Scholar 

  6. Costa RM, Federov NB, Kogan JH et al (2002) Mechanism for the learning deficits in a mouse model of neurofibromatosis type 1. Nature 415:526–530

    Article  CAS  PubMed  Google Scholar 

  7. Park CS, Zhong L, Tang SJ (2009) Aberrant expression of synaptic plasticity-related genes in the NF1 +/− mouse hippocampus. J Neurosci Res 87:3107–3119

    Article  CAS  PubMed  Google Scholar 

  8. Suh YH, Checler F (2002) Amyloid precursor protein, presenilins and alpha-synuclein: molecular pathogenesis and pharmacological applications in Alzheimer disease. Pharmacol Rev 54:469–525

    Article  CAS  PubMed  Google Scholar 

  9. Marcello E, Epis R, Di Luca M (2008) Amyloid flirting with synaptic failure: towards a comprehensive view of Alzheimer disease pathogenesis. Eur J Pharmacol 585:109–118

    Article  CAS  PubMed  Google Scholar 

  10. Rossjohn J, Cappai R, Feil SC et al (1999) Crystal structure of the N-terminal, growth factor-like domain of Alzheimer amyloid precursor protein. Nat Struct Biol 6:327–331

    Article  CAS  PubMed  Google Scholar 

  11. Perez RG, Zheng H, Van der Ploeg LH et al (1997) The beta-amyloid precursor protein of Alzheimer’s disease enhances neuron viability and modulates neuronal polarity. J Neurosci 17:9407–9414

    CAS  PubMed  Google Scholar 

  12. Dawson GR, Seabrook H, Zheng DW et al (1999) Age-related cognitive deficits, impaired long-term potentiation and reduction in synaptic marker density in mice lacking the beta-amyloid precursor protein. Neuroscience 90:1–13

    Article  CAS  PubMed  Google Scholar 

  13. Seabrook GR, Rosahl TW (1999) Transgenic animals relevant to Alzheimer’s disease. Neuropharmacology 38:1–17

    Article  CAS  PubMed  Google Scholar 

  14. Koo EH, Sisodia SS, Archer DR et al (1990) Precursor of amyloid protein in Alzheimer disease undergoes fast axonal transport. Proc Natl Acad Sci USA 87:1561–1565

    Article  CAS  PubMed  Google Scholar 

  15. Sisodia SS, Koo EH, Hoffman PN et al (1993) Identification and transport of full length APP in rat peripheral nervous system. J Neurosci 13:3136–3142

    CAS  PubMed  Google Scholar 

  16. Accili D, Fishburn CS, Drago J et al (1996) A targeted mutation of the D3 dopamine receptor gene is associated with hyperactivity in mice. Proc Natl Acad Sci USA 93:1945–1949

    Article  CAS  PubMed  Google Scholar 

  17. Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 3:1101–1108

    Article  CAS  PubMed  Google Scholar 

  18. Carroll SL, Ratner N (2008) How does the Schwann cell lineage form tumors in NF1? Glia 56:1590–1605

    Article  PubMed  Google Scholar 

  19. Naves FJ, Calzada B, Cabal A et al (1994) Expression of beta-amyloid precursor protein (APP) in human dorsal root ganglia. Neurosci Lett 181:73–77

    Article  CAS  PubMed  Google Scholar 

  20. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  21. Pascale A, Fortino I, Govoni S et al (1996) Functional impairment in protein kinase C by RACK1 (receptor for activated C kinase 1) deficiency in aged rat brain cortex. J Neurochem 67:2471–2477

    Article  CAS  PubMed  Google Scholar 

  22. Lansner A (2009) Associative memory models: from the cell-assembly theory to biophysically detailed cortex simulations. Trends Neurosci 32:178–186

    Article  CAS  PubMed  Google Scholar 

  23. Lee E, Son H (2009) Adult hippocampal neurogenesis and related neurotrophic factors. BMB Rep 42:239–244

    CAS  PubMed  Google Scholar 

  24. Manto M (2008) The cerebellum, cerebellar disorders, and cerebellar research-two centuries of discoveries. Cerebellum 7:505–516

    Article  PubMed  Google Scholar 

  25. Bollag G, McCormick F, Clark R (1993) Characterization of full-length neurofibromin: tubulin inhibits Ras GAP activity. EMBO J 12:1923–1927

    CAS  PubMed  Google Scholar 

  26. Gregory PE, Gutmann DH, Mitchell A et al (1993) Neurofibromatosis type 1 gene product (neurofibromin) associates with microtubules. Somat Cell Mol Genet 19:265–274

    Article  CAS  PubMed  Google Scholar 

  27. Xu H, Gutman DH (1997) Mutations in the GAP-related domain impair the ability of neurofibromin to associate with microtubules. Brain Res 759:149–152

    Article  CAS  PubMed  Google Scholar 

  28. Li C, Cheng Y, Gutman DA et al (2001) Differential localization of the neurofibromatosis (NF1) gene product, neurofibromin with the F-actin or microtubule cytoskeleton during differentiation of telencephalic neurons. Dev Brain Res 130:231–248

    Article  CAS  Google Scholar 

  29. Hakimi MA, Speicher DW, Shiekhattar R (2002) The motor protein kinesin-1 links neurofibromin and merlin in a common cellular pathway of neurofibromatosis. J Biol Chem 277:36909–36912

    Article  CAS  PubMed  Google Scholar 

  30. Hsueh YP, Roberts AM, Volta M et al (2001) Bipartite interaction between neurofibromatosis type 1 protein (neurofibromin) and syndecan transmembrane heparan sulfate proteoglycans. J Neurosci 21:3764–3770

    CAS  PubMed  Google Scholar 

  31. Herzog V, Kirfal G, Siemens C et al (2004) Biological roles of APP in the epidermis. Eur J Cell Biol 83:613–624

    Article  CAS  PubMed  Google Scholar 

  32. Kamal A, Alemnar-Queralt A, Leblanc JF et al (2000) Axonal transport of amyloid precursor protein is mediated by direct binding to the kinesin light chain subunit of kinesin. Neuron 28:449–459

    Article  CAS  PubMed  Google Scholar 

  33. De Schepper S, Boucneau JMA, Westbroek W et al (2006) Neurofibromatosis type 1 protein and amyloid precursor protein interact in normal human melanocytes and colocalize with melanosomes. J Invest Dermatol 626:653–659

    Article  Google Scholar 

Download references

Acknowledgments

These experiments were supported by the international PhD program in Neuropharmacology, University of Catania, Medical School. We thank Mr. P. Asero and Mrs. R. Gambino for their technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Velia D’Agata.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Castorina, A., Leggio, G.M., Giunta, S. et al. Neurofibromin and Amyloid Precursor Protein Expression in Dopamine D3 Receptor Knock-Out Mice Brains. Neurochem Res 36, 426–434 (2011). https://doi.org/10.1007/s11064-010-0359-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-010-0359-0

Keywords

Navigation