Skip to main content

Advertisement

Log in

Neural Markers Espression in Rat Bone Marrow Mesenchymal Stem Cell Cultures Treated with Neurosteroids

  • ORIGINAL PAPER
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The aim of the present investigation is to study the effects of DEX or E2 treatment during differentiation towards neural cell line of rat BM-MSCs in culture. In order to better characterize biochemically our in vitro model, we evaluate by western blotting and immunocytochemical analysis some neural lineage markers (nestin, neurofilament, β-tubulin) and MAP-Kinases. An enhanced expression of the neural markers and MAP-Kinase in DEX-treated BM-MSCs cultures is found. In addition, E2-treatment increases MAP-Kinase and β-tubulin expression, but it decreases nestin and neurofilament expression. In conclusion, our findings highlight a significant up and down modulation of nestin, neurofilament, β-tubulin and MAP-Kinases expression in neurosteroids-treated BM-MSCs. In particular, our results clarify the molecular mechanism involved during eventual differentiation of these stem cells treated with DEX and E2, addressed towards a neural cell line, that may express neurotrophic receptors and release neurotrophines particularly implicated during neurogenesis processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Arthur A, Zannettino S, Gronthos S (2009) The therapeutic applications of multipotential mesenchymal/stromal stem cells in skeletal tissue repair. J Cell Physiol 218(2):237–245

    Article  CAS  PubMed  Google Scholar 

  2. Sanchez-Ramos J, Song S, Cardozo-Pelaez F et al (2000) Adult bone marrow stromal cells differentiate into neural cells in vitro. Exp Neurol 164:247–256

    Article  CAS  PubMed  Google Scholar 

  3. Avola R, Di Tullio MA, Fisichella A et al (2004) Glial fibrillary acidic protein and vimentin expression is regulated by glucocorticoids and neurotrophic factors in primary rat astroglial cultures. Clin Exp Hypertens 26(4):323–333

    Article  CAS  PubMed  Google Scholar 

  4. Cuzzocrea S, Bruscoli S, Crisafulli C et al (2007) Estrogen receptor antagonist fulvestrant (ICI 182, 780) inhibits the anti-inflammatory effect of glucocorticoids. Mol Pharmacol 71(1):132–144

    Article  CAS  PubMed  Google Scholar 

  5. Mattsson C, Olsson T (2007) Estrogens and glucocorticoid hormones in adipose tissue metabolism. Curr Med Chem 14(27):2918–2924

    Article  CAS  PubMed  Google Scholar 

  6. Fadini GP, De Kreutzenberg S, Albiero M et al (2008) Gender differences in endothelial progenitor cells and cardiovascular risk profile: the role of female estrogens. Arterioscler Thromb Vasc Biol 28(5):997–1004

    Article  CAS  PubMed  Google Scholar 

  7. Bramanti V, Bronzi D, Raciti G et al (2007) Neurosteroid-growth factor cross-talk induces up and down regulation of GFAP and vimentin expression in serum free astrocyte cultures. Ital J Biochem 56(4):302–306

    PubMed  Google Scholar 

  8. Ramalho AC, Jullienne A, Couttet P et al (2001) Effect of estradiol on cytokine production in immortalized human marrow stromal cell lines. Cytokine 16:126–130

    Article  CAS  PubMed  Google Scholar 

  9. Brannvall K, Korhonen L, Lindholm D (2002) Estrogen-receptordependent regulation of neural stem cell proliferation and differentiation. Mol Cell Neurosci 21:512–520

    Article  CAS  PubMed  Google Scholar 

  10. Perrot R, Berges R, Bocquet A et al (2008) Review of the multiple aspects of neurofilament functions and their possible contribution to neurodegeneration. Mol Neurobiol 38:27–65

    Article  CAS  PubMed  Google Scholar 

  11. Dràberovà E, Del Valle L, Gordon J et al (2008) Class III beta-Tubulin is constitutively coexpressed with glial fibrillary acidic protein and nestin in midgestational human fetal astrocytes: implications for phenotypic identity. J Neuropathol Exp Neurol 67(4):341–354

    Article  PubMed  Google Scholar 

  12. Avola R, Mignini F, Mazzone V et al (2004) Growth factor-estradiol interaction on DNA labeling and cytoskeletal protein expression in cultured rat astrocytes. Neurosci Lett 358:177–180

    Article  CAS  PubMed  Google Scholar 

  13. Bramanti V, Bronzi D, Tomassoni D et al (2008) Growth factors and steroid mediated regulation of cytoskeletal protein expression in serum-deprived primary astrocyte cultures. Neurochem Res 33(12):2593–2600

    Article  CAS  PubMed  Google Scholar 

  14. Campisi A, Bramanti V, Caccamo D et al (2008) Effect of growth factors and steroids on transglutaminase activity and expression in primary astroglial cell cultures. J Neurosci Res 86(6):1297–1305

    Article  CAS  PubMed  Google Scholar 

  15. Prezzavento O, Campisi A, Ronsisvalle S et al (2007) Novel sigma receptor ligands: synthesis and biological profile. J Med Chem 50(5):951–961

    Article  CAS  PubMed  Google Scholar 

  16. Hong L, Colpan A, Peptan IA (2006) Modulations of 17-beta estradiol on osteogenic and adipogenic differentiations of human mesenchymal stem cells. Tissue Eng. 12(10):2747–2753

    Article  CAS  PubMed  Google Scholar 

  17. Brooke G, Cook M, Blair C et al (2007) Therapeutic applications of mesenchymal stromal cells. Semin Cell Dev Biol 18:846–858

    Article  CAS  PubMed  Google Scholar 

  18. Di Silvio L, Jameson J, Gamie Z et al (2006) In vitro evaluation of the direct effect of estradiol on human osteoblasts (HOB) and human mesenchymal stem cells (h-MSCs). Injury 37(3):S33–S42

    Article  Google Scholar 

  19. Zhou S, Greenberger JS, Epperly MW et al (2008) Age-related intrinsic changes in human bone-marrow-derived mesenchymal stem cells and their differentiation to osteoblasts. Aging Cell 7(3):335–343

    Article  CAS  PubMed  Google Scholar 

  20. Hong L, Sultana H, Paulius K et al (2009) Steroid regulation of proliferation and osteogenic differentiation of bone marrow stromal cells: a gender difference. J Steroid Biochem Mol Biol 114:180–185

    Article  CAS  PubMed  Google Scholar 

  21. JungTestas I, Renoirb M, Bugnard H et al (1992) Demonstration of steroid hormone receptors and steroid action in primary cultures of rat glial cells. J Steroid Biochem Mol Biol 41:621–631

    Article  CAS  Google Scholar 

  22. Smith CL (1998) Cross-talk between peptide growth factor and estrogen receptor signalling pathways. Biol Reprod 58:627–632

    Article  CAS  PubMed  Google Scholar 

  23. Jiang Y, Jahagirdar BN, Reinhardt RL et al (2002) Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418:41–49

    Article  CAS  PubMed  Google Scholar 

  24. Li GR, Sun H, Deng X et al (2005) Characterization of ionic currents in human mesenchymal stem cells from bone marrow. Stem Cells 23:371–382

    Article  CAS  PubMed  Google Scholar 

  25. Tondreau T, Lagneaux L, Dejeneffe M et al (2004) Bone marrow-derived mesenchymal stem cells already express specific neural proteins before any differentiation. Differentiation 72:319–326

    Article  CAS  PubMed  Google Scholar 

  26. Park KS, Jung KH, Kim SH et al (2007) Functional expression of ion channels in mesenchymal stem cells derived from umbilical cord vein. Stem Cells 25:2044–2052

    Article  CAS  PubMed  Google Scholar 

  27. Bramanti V, Tomassoni D, Bronzi D, et al. (2010) Alpha-lipoic acid modulates GFAP, vimentin, nestin, cyclin D1 and MAP-kinase espression in astroglial cell cultures. Neurochem Res. September 03 (in press)

  28. Bramanti V, Tomassoni D, Avitabile M et al (2010) Biomarkers of glial cell proliferation and differentiation in culture. Front Biosci (Schol Ed) 1(2):558–570

    Article  Google Scholar 

  29. Torrente Y, Polli E (2008) Mesenchymal stem cell transplantation for neurodegenerative diseases. Cell Transplant 17(10–11):1103–1113

    Article  PubMed  Google Scholar 

  30. Crigler L, Robey RC, Asawachaicharn A et al (2006) Human mesenchymal stem cell subpopulation express a variety of neuro-regulatory molecules and promote neuronal cell survival and neuritogenesis. Exp Neurol 198:54–64

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors particularly acknowledged Prof. Abel Lajtha, Editor in Chief of this prestigious International journal, excellent scientific guide, who contributed greatly to stimulate the development and advancement of international neurochemical research. In addition, the authors are very grateful to Prof. Anna Maria Giuffrida Stella, mentor of Prof. Roberto Avola, for excellent scientific suggestions and advices given during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Avola.

Additional information

D. Bronzi and V. Bramanti contributed equally.

Special Issue: In Honor of Dr. Abel Lajtha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bronzi, D., Bramanti, V., Tomassoni, D. et al. Neural Markers Espression in Rat Bone Marrow Mesenchymal Stem Cell Cultures Treated with Neurosteroids. Neurochem Res 35, 2154–2160 (2010). https://doi.org/10.1007/s11064-010-0283-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-010-0283-3

Keywords

Navigation