Skip to main content

Advertisement

Log in

Systemic Gene Delivery Protects the Photoreceptors in the Retinal Degeneration Slow Mouse

  • ORIGINAL PAPER
  • Published:
Neurochemical Research Aims and scope Submit manuscript

An Erratum to this article was published on 09 May 2012

Abstract

The retinal degeneration slow (rds/rds) mouse was used to test photoreceptor protection by systemic gene delivery of non-erythropoietic forms of erythropoietin (EPO). Two Epo mutants were generated and packaged into recombinant adeno-associated virus (rAAV) serotype 2/5, controls included rAAV2/5.Epo and rAAV2/5.enhanced green fluorescent protein (eGFP). Mice were injected in the quadriceps at postnatal day seven and analyses were performed at postnatal day 90. Hematocrit, serum EPO levels, and outer nuclear layer (ONL) thickness were quantified. Hematocrit and serum EPO levels in rAAV2/5.eGFP, rAAV2/5.Epo, and rAAV2/5.EpoR103E treated mice were: 46%, 8 mU/ml; 63%, 117 mU/ml; and 52%, 332 mU/ml, respectively. The ONL from rds/rds mice treated with the Epo vectors were approximately twice as thick as the negative controls. This demonstrates that the photoreceptors can be protected without performing an intraocular injection and without increasing the hematocrit to unsafe levels. Intramuscular delivery of rAAV.EpoR103E is an attractive treatment for retinal degenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. RetNet (1996–2009). From http://www.sph.uth.tmc.edu/retnet/

  2. Rebuffat A, Harding CO, Ding Z et al (2010) Comparison of adeno-associated virus pseudotype 1, 2, and 8 vectors administered by intramuscular injection in the treatment of murine phenylketonuria. Hum Gene Ther 21:463–477

    Article  PubMed  CAS  Google Scholar 

  3. Banks W, Jumbe N, Farrell C et al (2004) Passage of erythropoietic agents across the blood brain barrier: a comparison of human and murine erythropoietin and the analog darbepoetin alfa. Eur J Pharmacol 505:93–101

    Article  PubMed  CAS  Google Scholar 

  4. Xenocostas A, Cheung W, Farrell F et al (2005) The pharmacokinetics of erythropoietin in the cerebrospinal fluid after intravenous administration of recombinant human erythropoietin. Eur J Pharmacol 61:189–195

    Article  CAS  Google Scholar 

  5. Statler P, McPherson R, Bauer L et al (2007) Pharmacokinetics of high-dose recombinant erythropoietin in plasma and brain of neonatal rats. Ped Res 61:671–675

    Article  CAS  Google Scholar 

  6. Gassmann M, Heinicke K, Soliz J et al (2003) Non-erythroid functions of erythropoietin. Adv Exper Med Biol 543:323–330

    Article  CAS  Google Scholar 

  7. Jubinsky P, Krijanovski O, Nathan D et al (1997) The beta chain of the interleukin-3 receptor functionally associates with the erythropoietin receptor. Blood 90:1867–1873

    PubMed  CAS  Google Scholar 

  8. Brines M, Grasso G, Fiordaliso F et al (2004) Erythropoietin mediates tissue protection through an erythropoietin and common beta-subunit heteroreceptor. Proc Natl Acad Sci USA 101:14907–14912

    Article  PubMed  CAS  Google Scholar 

  9. von Lindern M, Zauner W, Mellitzer G et al (1999) The glucocorticoid receptor cooperates with the erythropoietin receptor and c-Kit to enhance and sustain proliferation of erythroid progenitors in vitro. Blood 94:550–559

    Google Scholar 

  10. Stellacci E, Di Noia A, Di Baldassarre A et al (2009) Interaction between the glucocorticoid and erythropoietin receptors in human erythroid cells. Exp Hematol 37:559–572

    Article  PubMed  CAS  Google Scholar 

  11. Weishaupt J, Rohde G, Polking E et al (2004) Effect of erythropoietin on axotomy induced apoptosis in rat retinal ganglion cells. Invest Ophthalmol Vis Sci 45:1514–1522

    Article  PubMed  Google Scholar 

  12. King C, Rodger J, Bartlett C et al (2007) Erythropoietin is both neuroprotective and neuroregenerative following optic nerve transection. Exper Neurol 205:48–55

    Article  CAS  Google Scholar 

  13. Kilic U, Kilic E, Soliz J et al (2005) Erythropoietin protects from axotomy-induced degeneration of retinal ganglion cells by activating ERK-1/-2. FASEB J 19:249–251

    PubMed  CAS  Google Scholar 

  14. Wang H, Liu ZL, Zhuang XT et al (2009) Neuroprotective effect of recombinant human erythropoietin on optic nerve injury in rats. Chin Med J 122:2008–2012

    PubMed  CAS  Google Scholar 

  15. Zhong L, Bradley J, Schubert W et al (2007) Erythropoietin promotes survival of retinal ganglion cells in DBA/2J glaucoma mice. Invest Ophthalmol Vis Sci 48:1212–1218

    Article  PubMed  Google Scholar 

  16. Rex TS, Wong Y, Kodali K et al (2009) Neuroprotection of photoreceptors by direct delivery of erythropoietin to the retina of the retinal degeneration slow mouse. Exp Eye Res 89:735–740

    Article  PubMed  CAS  Google Scholar 

  17. Rex T, Allocca M, Domenici L et al (2004) Systemic but not intraocular Epo gene transfer protects the retina from light-and genetic-induced degeneration. Mol Ther 10:855–861

    Article  PubMed  CAS  Google Scholar 

  18. Leist M, Ghezzi P, Grasso G et al (2004) Derivatives of erythropoietin that are tissue protective but not erythropoietic. Science 305:239–242

    Article  PubMed  CAS  Google Scholar 

  19. Xiong Y, Mahmood A, Qu C et al (2010) Erythropoietin improves histological and functional outcomes after traumatic brain injury in mice in the absence of the neural erythropoietin receptor. J Neurotrauma 27:205–215

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This project was funded by grants to T.S.R. from The Roche Foundation for Anemia Research, Hope for Vision, and UTHSC Neuroscience Institute. Additional support was provided by an unrestricted grant from Research Prevent Blindness and an NEI Core Grant 5P30EY13080.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tonia S. Rex.

Additional information

Special Issue: In Honor of Dr. Dianna Johnson.

An erratum to this article can be found at http://dx.doi.org/10.1007/s11064-012-0785-2

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sullivan, T., Kodali, K. & Rex, T.S. Systemic Gene Delivery Protects the Photoreceptors in the Retinal Degeneration Slow Mouse. Neurochem Res 36, 613–618 (2011). https://doi.org/10.1007/s11064-010-0272-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-010-0272-6

Keywords

Navigation