Skip to main content

Advertisement

Log in

Comparison of Newly Generated Doublecortin-immunoreactive Neuronal Progenitors in the Main Olfactory Bulb among Variously Aged Gerbils

  • ORIGINAL PAPER
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

In the present study, we investigated age-related differences in neuronal progenitors in the gerbil main olfactory bulb (MOB) using doublecortin (DCX), a marker for neuronal progenitors which differentiate into neurons in the brain. No difference in the number of neuronal nuclei (NeuN)-immunoreactive neurons was found in the MOB at variously aged gerbils. At postnatal month (PM) 1, DCX immunoreaction was detected in all layers of the MOB except for the olfactory nerve layer. At this time point, DCX-immunoreactive cells (neuronal progenitors) were very abundant; however, they did not have fully developed-processes. From PM 3, the number of DCX-immunoreactive neuronal progenitors was decreased with age. At PM 6, DCX-immunoreactive cells showed very well-developed processes. In western blot analysis, DCX protein level in the MOB was highest at PM 1. Thereafter, levels of DCX protein were decreased with age. In the subventricular zone of the lateral ventricle, the number of Ki-67-immunoractive cells (proliferating cells) was also significantly decreased with age. In addition, increases of α-synuclein-immunoreactive structures were observed in the MOB with age. These results suggest that decrease in DCX-immunoreactive neuronal progenitors and its protein levels in the MOB with age may be associated with reduction of cell proliferation in the SVZ and with an increase in α-synuclein in the MOB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Goldman S (2005) Stem and progenitor cell-based therapy of the human central nervous system. Nat Biotechnol 23:862–871

    Article  CAS  PubMed  Google Scholar 

  2. Kuhn HG, Cooper-Kuhn C, Eriksson P et al (2005) Signals regulating neurogenesis in the adult olfactory bulb. Chem Sense 30(Suppl 1):i109–i110

    Article  CAS  Google Scholar 

  3. Larsson A, Wilhelmsson U, Pekna M et al (2004) Increased cell proliferation and neurogenesis in the hippocampal dentate gyrus of old GFAP(−/−)Vim(−/−) mice. Neurochem Res 29:2069–2073

    Article  CAS  PubMed  Google Scholar 

  4. Lemasson M, Saghatelyan A, Olivo-Marin JC et al (2005) Neonatal and adult neurogenesis provide two distinct populations of newborn neurons to the mouse olfactory bulb. J Neurosci 25:6816–6825

    Article  CAS  PubMed  Google Scholar 

  5. Paizanis E, Kelaï S, Renoir T et al (2007) Life-long hippocampal neurogenesis: environmental, pharmacological and neurochemical modulations. Neurochem Res 32:1762–1771

    Article  CAS  PubMed  Google Scholar 

  6. Srivastava N, Seth K, Khanna VK et al (2008) Functional restoration using basic fibroblast growth factor (bFGF) infusion in Kainic acid induced cognitive dysfunction in rat: neurobehavioural and neurochemical studies. Neurochem Res 33:1169–1177

    Article  CAS  PubMed  Google Scholar 

  7. Belluzzi O, Benedusi M, Ackman J et al (2003) Electrophysiological differentiation of new neurons in the olfactory bulb. J Neurosci 23:10411–10418

    CAS  PubMed  Google Scholar 

  8. Lledo PM, Alonso M, Grubb MS (2006) Adult neurogenesis and functional plasticity in neuronal circuits. Nat Rev Neurosci 7:179–193

    Article  CAS  PubMed  Google Scholar 

  9. Lledo PM, Gheusi G, Vincent JD (2005) Information processing in the mammalian olfactory system. Physiol Rev 85:281–317

    Article  PubMed  Google Scholar 

  10. Magavi SS, Mitchell BD, Szentirmai O et al (2005) Adult-born and preexisting olfactory granule neurons undergo distinct experience-dependent modifications of their olfactory responses in vivo. J Neurosci 25:10729–10739

    Article  CAS  PubMed  Google Scholar 

  11. Mouret A, Gheusi G, Gabellec MM et al (2008) Learning and survival of newly generated neurons: when time matters. J Neurosci 28:11511–11516

    Article  CAS  PubMed  Google Scholar 

  12. Yamada M, Onodera M, Mizuno Y et al (2004) Neurogenesis in olfactory bulb identified by retroviral labeling in normal and 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine-treated adult mice. Neuroscience 124:173–181

    Article  CAS  PubMed  Google Scholar 

  13. Cooper-Kuhn CM, Kuhn HG (2002) Is it all DNA repair? Methodological considerations for detecting neurogenesis in the adult brain. Brain Res Dev Brain Res 134:13–21

    Article  CAS  PubMed  Google Scholar 

  14. Cameron HA, McKay RD (2001) Adult neurogenesis produces a large pool of new granule cells in the dentate gyrus. J Comp Neurol 435:406–417

    Article  CAS  PubMed  Google Scholar 

  15. Brown JP, Couillard-Després S, Cooper-Kuhn CM et al (2003) Transient expression of doublecortin during adult neurogenesis. J Comp Neurol 467:1–10

    Article  CAS  PubMed  Google Scholar 

  16. Jin K, Mao XO, Greenberg DA (2004) Proteomic analysis of neuronal hypoxia in vitro. Neurochem Res 29:1123–1128

    Article  CAS  PubMed  Google Scholar 

  17. Karl C, Couillard-Despres S, Prang P et al (2005) Neuronal precursor-specific activity of a human doublecortin regulatory sequence. J Neurochem 92:264–282

    Article  CAS  PubMed  Google Scholar 

  18. Rao MS, Hattiangady B, Shetty AK (2006) The window and mechanisms of major age-related decline in the production of new neurons within the dentate gyrus of the hippocampus. Aging Cell 5:545–558

    Article  CAS  PubMed  Google Scholar 

  19. Winner B, Geyer M, Couillard-Despres S et al (2006) Striatal deafferentation increases dopaminergic neurogenesis in the adult olfactory bulb. Exp Neurol 197:113–121

    Article  CAS  PubMed  Google Scholar 

  20. Couillard-Despres S, Winner B, Schaubeck S et al (2005) Doublecortin expression levels in adult brain reflect neurogenesis. Eur J Neurosci 21:1–14

    Article  PubMed  Google Scholar 

  21. Rich ST (1968) The Mongolian gerbil (Meriones unguiculatus) in research. Lab Anim Care 18(Suppl):235–243

    PubMed  Google Scholar 

  22. Fujita K, Kato T, Shibayama K et al (2006) Protective effect against 17beta-estradiol on neuronal apoptosis in hippocampus tissue following transient ischemia/recirculation in mongolian gerbils via down-regulation of tissue transglutaminase activity. Neurochem Res 31:1059–1068

    Article  CAS  PubMed  Google Scholar 

  23. Hafidi A, Lanjun G, Sanes DH (1999) Age-dependent failure of axon regeneration in organotypic culture of gerbil auditory midbrain. J Neurobiol 41:267–280

    Article  CAS  PubMed  Google Scholar 

  24. He DZ, Dallos P (1997) Expression of potassium channels in gerbil outer hair cells during development does not require neural induction. Brain Res Dev Brain Res 103:95–97

    Article  CAS  PubMed  Google Scholar 

  25. Hwang IK, Yoo KY, Kim do H et al (2007) Time course of changes in pyridoxal 5’-phosphate (vitamin B6 active form) and its neuroprotection in experimental ischemic damage. Exp Neurol 206:114–125

    Article  CAS  PubMed  Google Scholar 

  26. Ocbina PJ, Dizon ML, Shin L et al (2006) Doublecortin is necessary for the migration of adult subventricular zone cells from neurospheres. Mol Cell Neurosci 33:126–135

    Article  CAS  PubMed  Google Scholar 

  27. West MJ (1993) New stereological methods for counting neurons. Neurobiol Aging 14:275–285

    Article  CAS  PubMed  Google Scholar 

  28. Loskota WJ, Lomax P, Verity MA (1974) A stereotaxic atlas of the Mongolian gerbil brain (Meriones unguiculatus). Ann Arbor Science, Ann Arbor, pp 1–157

    Google Scholar 

  29. Biebl M, Cooper CM, Winkler J et al (2000) Analysis of neurogenesis and programmed cell death reveals a self-renewing capacity in the adult rat brain. Neurosci Lett 291:17–20

    Article  CAS  PubMed  Google Scholar 

  30. Bayer SA (1983) 3H-thymidine-radiographic studies of neurogenesis in the rat olfactory bulb. Exp Brain Res 50:329–340

    Article  CAS  PubMed  Google Scholar 

  31. Kaplan MS, McNelly NA, Hinds JW (1985) Population dynamics of adult-formed granule neurons of the rat olfactory bulb. J Comp Neurol 239:117–125

    Article  CAS  PubMed  Google Scholar 

  32. Hinds JW, McNelly NA (1977) Aging of the rat olfactory bulb: growth and atrophy of constituent layers and changes in size and number of mitral cells. J Comp Neurol 72:345–367

    Article  CAS  PubMed  Google Scholar 

  33. Rosselli-Austin L, Altman J (1979) The postnatal development of the main olfactory bulb of the rat. J Dev Physiol 1:295–313

    CAS  PubMed  Google Scholar 

  34. Lois C, Alvarez-Buylla A (1994) Long-distance neuronal migration in the adult mammalian brain. Science 264:1145–1148

    Article  CAS  PubMed  Google Scholar 

  35. Molofsky AV, Slutsky SG, Joseph NM et al (2006) Increasing p16INK4a expression decreases forebrain progenitors and neurogenesis during ageing. Nature 443:448–452

    Article  CAS  PubMed  Google Scholar 

  36. Tropepe V, Craig CG, Morshead CM et al (1997) Transforming growth factor-alpha null and senescent mice show decreased neural progenitor cell proliferation in the forebrain subependyma. J Neurosci 17:7850–7859

    CAS  PubMed  Google Scholar 

  37. Enwere E, Shingo T, Gregg C et al (2004) Aging results in reduced epidermal growth factor receptor signaling, diminished olfactory neurogenesis, and deficits in fine olfactory discrimination. J Neurosci 24:8354–8365

    Article  CAS  PubMed  Google Scholar 

  38. Winner B, Rockenstein E, Lie DC et al (2008) Mutant alpha-synuclein exacerbates age-related decrease of neurogenesis. Neurobiol Aging 29:913–925

    Article  CAS  PubMed  Google Scholar 

  39. Deuel TA, Liu JS, Corbo JC et al (2006) Genetic interactions between doublecortin and doublecortin-like kinase in neuronal migration and axon outgrowth. Neuron 49:41–53

    Article  CAS  PubMed  Google Scholar 

  40. Koizumi H, Tanaka T, Gleeson JG (2006) Doublecortin-like kinase functions with doublecortin to mediate fiber tract decussation and neuronal migration. Neuron 49:55–66

    Article  CAS  PubMed  Google Scholar 

  41. des Portes V, Pinard JM, Billuart P et al (1998) A novel CNS gene required for neuronal migration and involved in X-linked subcortical laminar heterotopia and lissencephaly syndrome. Cell 92:51–61

    Article  CAS  PubMed  Google Scholar 

  42. Gleeson JG, Allen KM, Fox JW et al (1998) Doublecortin, a brain-specific gene mutated in human X-linked lissencephaly and double cortex syndrome, encodes a putative signaling protein. Cell 92:63–72

    Article  CAS  PubMed  Google Scholar 

  43. Riddle DR (2007) Brain aging: models, methods, and mechanisms. Frontiers in neuroscience. CRC Press, Boca Raton xix, 384 p.

    Google Scholar 

  44. Luo J, Daniels SB, Lennington JB et al (2006) The aging neurogenic subventricular zone. Aging Cell 5:139–152

    Article  CAS  PubMed  Google Scholar 

  45. Jin K, Minami M, Xie L et al (2004) Ischemia-induced neurogenesis is preserved but reduced in the aged rodent brain. Aging Cell 3:373–377

    Article  CAS  PubMed  Google Scholar 

  46. Trojanowski JQ, Lee VM (1998) Aggregation of neurofilament and alpha-synuclein proteins in Lewy bodies: implications for the pathogenesis of Parkinson disease and Lewy body dementia. Arch Neurol 55:151–152

    Article  CAS  PubMed  Google Scholar 

  47. Singleton AB, Farrer M, Johnson J et al (2003) Alpha-Synuclein locus triplication causes Parkinson’s disease. Science 302:841

    Article  CAS  PubMed  Google Scholar 

  48. Winner B, Lie DC, Rockenstein E et al (2004) Human wild-type alpha-synuclein impairs neurogenesis. J Neuropathol Exp Neurol 63:1155–1166

    CAS  PubMed  Google Scholar 

  49. Zhong SC, Luo X, Chen XS et al (2009) Expression and subcellular location of alpha-synuclein during mouse-embryonic development. Cell Mol Neurobiol 30:469–482

    Article  PubMed  Google Scholar 

  50. Fleming SM, Tetreault NA, Mulligan CK et al (2008) Olfactory deficits in mice overexpressing human wildtype alpha-synuclein. Eur J Neurosci 28:247–256

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Mr. Seok Han, Mr. Seung Uk Lee and Ms. Hyun Sook Kim for their technical help and Seung-Hae Kwon of the Korean Basic Science Institute Chuncheon Center for technical assistance with the confocal image analyses in this study. This research was supported by a grant (2009K001290) from Brain Research Center of the twenty-first Century Frontier Research Program funded by the Ministry of Education, Science and Technology, the Republic of Korea, by the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2009-0084089), and by a grant from Hallym University Medical Center Research Fund (01-2007-20).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sung Koo Kim or Moo-Ho Won.

Additional information

Jung Hoon Choi and Ki-Yeon Yoo contributed equally to this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, J.H., Yoo, KY., Lee, C.H. et al. Comparison of Newly Generated Doublecortin-immunoreactive Neuronal Progenitors in the Main Olfactory Bulb among Variously Aged Gerbils. Neurochem Res 35, 1599–1608 (2010). https://doi.org/10.1007/s11064-010-0220-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-010-0220-5

Keywords

Navigation