Skip to main content
Log in

Enhanced Glutathione Efflux from Astrocytes in Culture by Low Extracellular Ca2+ and Curcumin

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Efflux of glutathione (GSH) from astrocytes has been suggested as a key factor for neuroprotection by astrocytes. Here we evaluated if the Nrf2 activator curcumin affects basal and stimulated (Ca2+ omission) GSH efflux from cultures of astroglial cells. Stimulated efflux of GSH was observed at medium concentration of 0, 0.1 mM Ca2+, but not at 0.2 or 0.3 mM Ca2+. Astroglia treated with 30 μM curcumin increased the cellular content of GSH in parallel with elevated basal and stimulated efflux. Conversely treatment with buthionine sulfoximine lowered efflux of GSH. The efflux stimulated by Ca2+- omission was not affected by the P2X7-receptor antagonist Blue Brilliant G (100 nM) or the pannexin mimetic/blocking peptide 10Panx1 but inhibited by the gap junction blocker carbenoxolone (100 μM) and a hemichannel blocker Gap26 (300 μM). RNAi directed against Nrf2 partly inhibited the effect of curcumin. The results show that elevated cellular GSH by curcumin treatment enhance efflux from astroglial cells, a process which appear to be a prerequisite for astroglial mediated neuroprotection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Dringen R, Pfeiffer B, Hamprecht B (1999) Synthesis of the antioxidant glutathione in neurons: supply by astrocytes of CysGly as precursor for neuronal glutathione. J Neurosci 19(2):562–569

    CAS  PubMed  Google Scholar 

  2. Li X, Wallin C, Weber SG et al (1999) Net efflux of cysteine, glutathione and related metabolites from rat hippocampal slices during oxygen/glucose deprivation: dependence on gamma-glutamyl transpeptidase. Brain Res 815(1):81–88

    Article  CAS  PubMed  Google Scholar 

  3. Aoyama K, Suh SW, Hamby AM et al (2006) Neuronal glutathione deficiency and age-dependent neurodegeneration in the EAAC1 deficient mouse. Nat Neurosci 9(1):119–126

    Article  CAS  PubMed  Google Scholar 

  4. Shih AY, Johnson DA, Wong G et al (2003) Coordinate regulation of glutathione biosynthesis and release by Nrf2-expressing glia potently protects neurons from oxidative stress. J Neurosci 23(8):3394–3406

    CAS  PubMed  Google Scholar 

  5. Vargas MR, Johnson DA, Sirkis DW et al (2008) Nrf2 activation in astrocytes protects against neurodegeneration in mouse models of familial amyotrophic lateral sclerosis. J Neurosci 28(50):13574–13581

    Article  CAS  PubMed  Google Scholar 

  6. Hirrlinger J, Schulz JB, Dringen R (2002) Glutathione release from cultured brain cells: multidrug resistance protein 1 mediates the release of GSH from rat astroglial cells. J Neurosci Res 69(3):318–326

    Article  CAS  PubMed  Google Scholar 

  7. Rana S, Dringen R (2007) Gap junction hemichannel-mediated release of glutathione from cultured rat astrocytes. Neurosci Lett 415(1):45–48

    Article  CAS  PubMed  Google Scholar 

  8. Stridh MH, Tranberg M, Weber SG et al (2008) Stimulated efflux of amino acids and glutathione from cultured hippocampal slices by omission of extracellular calcium: likely involvement of connexin hemichannels. J Biol Chem. 283(16):10347–10356

    Article  CAS  PubMed  Google Scholar 

  9. Hansen AJ (1985) Effect of anoxia on ion distribution in the brain. Physiol Rev 65(1):101–148

    CAS  PubMed  Google Scholar 

  10. Lavoie S, Chen Y, Dalton TP et al (2009) Curcumin, quercetin, and tBHQ modulate glutathione levels in astrocytes and neurons: importance of the glutamate cysteine ligase modifier subunit. J Neurochem 108(6):1410–1422

    Article  CAS  PubMed  Google Scholar 

  11. Gomes P, Srinivas SP, Van Driessche W et al (2005) ATP release through connexin hemichannels in corneal endothelial cells. Invest Ophthalmol Vis Sci 46(4):1208–1218

    Article  PubMed  Google Scholar 

  12. Pelegrin P, Surprenant A (2006) Pannexin-1 mediates large pore formation and interleukin-1beta release by the ATP-gated P2X7 receptor. EMBO J 25(21):5071–5082

    Article  CAS  PubMed  Google Scholar 

  13. Nodin C, Nilsson M, Blomstrand F (2005) Gap junction blockage limits intercellular spreading of astrocytic apoptosis induced by metabolic depression. J Neurochem 94(4):1111–1123

    Article  CAS  PubMed  Google Scholar 

  14. Kozlova EN, Takenaga K (2005) A procedure for culturing astrocytes from white matter and the application of the siRNA technique for silencing the expression of their specific marker, S100A4. Brain Res Brain Res Protoc 15(2):59–65

    Article  CAS  PubMed  Google Scholar 

  15. Smith PK, Krohn RI, Hermanson GT et al (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150(1):76–85

    Article  CAS  PubMed  Google Scholar 

  16. Sandberg M, Butcher SP, Hagberg H (1986) Extracellular overflow of neuroactive amino acids during severe insulin-induced hypoglycemia: in vivo dialysis of the rat hippocampus. J Neurochem 47(1):178–184

    CAS  PubMed  Google Scholar 

  17. Ye ZC, Wyeth MS, Baltan-Tekkok S et al (2003) Functional hemichannels in astrocytes: a novel mechanism of glutamate release. J Neurosci 23(9):3588–3596

    CAS  PubMed  Google Scholar 

  18. Bruzzone S, Guida L, Zocchi E et al (2001) Connexin 43 hemi channels mediate Ca2+-regulated transmembrane NAD+ fluxes in intact cells. Faseb J 15(1):10–12

    CAS  PubMed  Google Scholar 

  19. Stout CE, Costantin JL, Naus CC et al (2002) Intercellular calcium signaling in astrocytes via ATP release through connexin hemichannels. J Biol Chem 277(12):10482–10488

    Article  CAS  PubMed  Google Scholar 

  20. Leybaert L, Braet K, Vandamme W et al (2003) Connexin channels, connexin mimetic peptides and ATP release. Cell Commun Adhes 10(4–6):251–257

    CAS  PubMed  Google Scholar 

  21. Fedirko N, Svichar N, Chesler M (2006) Fabrication and use of high-speed, concentric h+- and Ca2+-selective microelectrodes suitable for in vitro extracellular recording. J Neurophysiol 96(2):919–924

    Article  CAS  PubMed  Google Scholar 

  22. Hayashi A, Suzuki H, Itoh K et al (2003) Transcription factor Nrf2 is required for the constitutive and inducible expression of multidrug resistance-associated protein 1 in mouse embryo fibroblasts. Biochem Biophys Res Commun 310(3):824–829

    Article  CAS  PubMed  Google Scholar 

  23. Minich T, Riemer J, Schulz JB et al (2006) The multidrug resistance protein 1 (Mrp1), but not Mrp5, mediates export of glutathione and glutathione disulfide from brain astrocytes. J Neurochem 97(2):373–384

    Article  CAS  PubMed  Google Scholar 

  24. Sagara J, Makino N, Bannai S (1996) Glutathione efflux from cultured astrocytes. J Neurochem 66(5):1876–1881

    Article  CAS  PubMed  Google Scholar 

  25. Lu SC (2009) Regulation of glutathione synthesis. Mol Aspects Med 30(1–2):42–59

    Article  CAS  PubMed  Google Scholar 

  26. Miralles VJ, Martinez-Lopez I, Zaragoza R et al (2001) Na+ dependent glutamate transporters (EAAT1, EAAT2, and EAAT3) in primary astrocyte cultures: effect of oxidative stress. Brain Res 922(1):21–29

    Article  CAS  PubMed  Google Scholar 

  27. Brodie AE, Reed DJ (1985) Buthionine sulfoximine inhibition of cystine uptake and glutathione biosynthesis in human lung carcinoma cells. Toxicol Appl Pharmacol 77(3):381–387

    Article  CAS  PubMed  Google Scholar 

  28. Al-Omar FA, Nagi MN, Abdulgadir MM et al (2006) Immediate and delayed treatments with curcumin prevents forebrain ischemia-induced neuronal damage and oxidative insult in the rat hippocampus. Neurochem Res 31(5):611–618

    Article  CAS  PubMed  Google Scholar 

  29. Jagatha B, Mythri RB, Vali S et al (2008) Curcumin treatment alleviates the effects of glutathione depletion in vitro and in vivo: therapeutic implications for Parkinson’s disease explained via in silico studies. Free Radic Biol Med 44(5):907–917

    Article  CAS  PubMed  Google Scholar 

  30. Wang Q, Sun AY, Simonyi A et al (2005) Neuroprotective mechanisms of curcumin against cerebral ischemia-induced neuronal apoptosis and behavioral deficits. J Neurosci Res 82(1):138–148

    Article  CAS  PubMed  Google Scholar 

  31. Shih AY, Imbeault S, Barakauskas V et al (2005) Induction of the Nrf2-driven antioxidant response confers neuroprotection during mitochondrial stress in vivo. J Biol Chem 280(24):22925–22936

    Article  CAS  PubMed  Google Scholar 

  32. Zeevalk GD, Razmpour R, Bernard LP (2008) Glutathione and Parkinson’s disease: is this the elephant in the room? Biomed Pharmacother 62(4):236–249

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The work was supported by the Swedish Research Council/Medicine to MS, Parkinsonfonden and Åhlénstiftelsen. MS and SGW are supported by the National Institutes of Health (GM 44842). FB is supported by Fredrik and Ingrid Thurings-, Edit Jacobsons- and Magnus Bergvalls foundations. MN is supported by the Swedish Research Council, LUA/ALF, the region of West Sweden (RUN) and Edit Jacobssons Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malin H. Stridh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stridh, M.H., Correa, F., Nodin, C. et al. Enhanced Glutathione Efflux from Astrocytes in Culture by Low Extracellular Ca2+ and Curcumin. Neurochem Res 35, 1231–1238 (2010). https://doi.org/10.1007/s11064-010-0179-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-010-0179-2

Keywords

Navigation