Skip to main content
Log in

Presynaptic Glycine Receptors Influence Plasma Membrane Potential and Glutamate Release

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Glycine is a classical inhibitory neurotransmitter however presynaptic glycine receptors have rather depolarizing action. Reasons for latter phenomenon are unknown. In the present paper we have investigated how glycine influences cytosolic chloride level monitored by fluorescent dye SPQ, membrane potential monitored by fluorescent dye DiSC3(5) and [14C]-glutamate release in synaptosomes. We estimated that cytosolic chloride concentration in synaptosomes was about 52 ± 1 mM. Glycine (1 mM) induced chloride efflux and caused slow plasma membrane depolarization. Chloride efflux was almost completely blocked by 100 μM strychnine whilst glycine-induced depolarization was only partially. We also showed that 1 mM glycine induced [14C]-glutamate release via a strychnine-insensitive pathway. Hence we have concluded that glycine was able to induce two independent effects in synaptosomes: (1) Chloride efflux with following depolarization. This efflux was sensitive to strychnine and thereby is probably conducted through glycine-gated ion channels. (2) Glutamate release seems to be mediated by glycine transporters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. McDermott AB, Role LW, Siegelbaum SA (1999) Presynaptic ionotropic receptors and the control of transmitter release. Ann Rev Neurosci 22:443–485

    Article  Google Scholar 

  2. Dorostkar MM, Boehm S (2008) Presynaptic ionotropic receptors. Handb Exp Pharmacol 184:479–527

    Article  CAS  PubMed  Google Scholar 

  3. Legendre P (2001) The glycinergic inhibitory synapse. Cell Mol Life Sci 58:760–793

    Article  CAS  PubMed  Google Scholar 

  4. Betz H, Laube B (2006) Glycine receptors: recent insights into their structural organization and functional diversity. J Neurochem 97:1600–1610

    Article  CAS  PubMed  Google Scholar 

  5. Lynch JW (2009) Native glycine receptor subtypes and their physiological roles. Neuropharmacology 56:303–309

    Article  CAS  PubMed  Google Scholar 

  6. Schwartz-Bloom RD, Sah R (2001) γ-aminobutyric acida neurotransmission and cerebral ischemia. J Neurochem 77:353–371

    Article  CAS  PubMed  Google Scholar 

  7. Ben-Ari Y, Gaiarsa J-L, Tyzio R et al (2007) GABA: a pioneer transmitter that excites immature neurons and generates primitive oscillations. Physiol Rev 87:1215–1284

    Article  CAS  PubMed  Google Scholar 

  8. Turecek R, Trussell LO (2001) Presynaptic glycine receptors enhance transmitter release at a mammalian central synapse. Nature 411:587–690

    Article  CAS  PubMed  Google Scholar 

  9. Jeong H-J, Jang I-S, Moorhouse AJ et al (2003) Activation of presynaptic glycine receptors facilitates glycine release from presynaptic terminals synapsing into rat spinal sacral dorsal commissural nucleus neurons. J Physiol 550:373–383

    Article  CAS  PubMed  Google Scholar 

  10. Lee E-A, Cho J-H, Choi I-S (2009) Presynaptic glycine receptors facilitate spontaneous glutamate release onto hilar neurons in the rat hippocampus. J Neurochem 109:275–286

    Article  CAS  PubMed  Google Scholar 

  11. Martinez-Zaguilan R, Gilles RJ, Sanchez-Armass S (1994) Regulation of pH in rat brain synaptosomes II. Role of Cl. J Neurophysiol 71:2249–2257

    CAS  PubMed  Google Scholar 

  12. Price GD, Trussell LO (2006) Estimate of the chloride concentration in a central glutamatergic terminal: a gramicidin perforated-patch study on the calyx of held. J Neurosci 26:11432–11436

    Article  CAS  PubMed  Google Scholar 

  13. Hara M, Inoue M, Yasukura T et al (1992) Uneven distribution of intracellular Cl in rat hippocampal neurons. Neurosci Let 143:135–138

    Article  CAS  Google Scholar 

  14. Kuner T, Augustine GJ (2000) A genetically encoded ratiometric neurotechnique indicator for chloride: capturing chloride transients in cultured hippocampal neurons. Neuron 27:447–459

    Article  CAS  PubMed  Google Scholar 

  15. Markova O, Mukhtarov M, Real E et al (2008) Genetically encoded chloride indicator with improved sensitivity. J Neurosci Meth 170:67–76

    Article  CAS  Google Scholar 

  16. Bonanno G, Vallebuona F, Donadoni F et al (1994) Heterocarrier-mediated reciprocal modulation of glutamate and glycine release in rat cerebral cortex and spinal cord synaptosomes. Eur J Pharmacol 252:61–67

    Article  CAS  PubMed  Google Scholar 

  17. Raiteri L, Raiteri M, Bonanno G (2001) Glycine is taken up through GLYT1 and GLYT2 transporters into mouse spinal cord axon terminals and causes vesicular and carrier-mediated release of its proposed co-transmitter GABA. J Neurochem 76:1823–1832

    Article  CAS  PubMed  Google Scholar 

  18. Raiteri L, Stigliani S, Siri A et al (2005) Glycine taken up through GLYT1 and GLYT2 heterotransporters into glutamatergic axon terminals of mouse spinal cord elicits release of glutamate by homotransporter reversal and though anion channels. Biochem Pharmacol 69:159–168

    Article  CAS  PubMed  Google Scholar 

  19. Raiteri L, Stgliani S, Usai C et al (2008) Functional expression of release-regulating glycine transporters GLYT1 on GABAergic neurons and GLYT2 on astrocytes in mouse spinal cord. Neurochem Int 52:103–112

    Article  CAS  PubMed  Google Scholar 

  20. Schneggenburger R, Forsythe ID (2006) The calyx of held. Cell Tissue Res 326:311–337

    Article  PubMed  Google Scholar 

  21. Waseem TV, Konev SV, Fedorovich SV (2004) Influence of hypotonic shock on glutamate and GABA uptake in rat brain synaptosomes. Neurochem Res 29:1653–1658

    Article  CAS  PubMed  Google Scholar 

  22. Schrimpf SP, Meskenaite V, Brunner E et al (2005) Proteomic analysis of synaptosomes using isotope-coded affinity tags and mass spectrometry. Proteomics 5:2631–2641

    Article  Google Scholar 

  23. Waseem TV, Rakovich AA, Lavrukevich TV et al (2005) Calcium regulates the mode of exocytosis induced by hypotonic shock in isolated neuronal presynaptic endings. Neurochem Int 46:235–242

    Article  CAS  PubMed  Google Scholar 

  24. Waseem TV, Kolos VA, Lapatsina LP et al (2007) Hypertonic shrinking but not hypotonic swelling increases sodium concentration in rat brain synaptosomes. Brain Res Bull 73:135–142

    Article  CAS  PubMed  Google Scholar 

  25. Hajos P (1975) An improved method for the preparation of synaptosomal fraction in high purity. Brain Res 93:485–489

    Article  CAS  PubMed  Google Scholar 

  26. Engblom AC, Akerman KEO (1991) Effect of ethanol on γ-aminobutyric acid and glycine receptor-coupled Cl fluxes in rat brain synaptosomes. J Neurochem 57:384–390

    Article  CAS  PubMed  Google Scholar 

  27. Fedorovich SV, Kaler GV, Konev SV (2003) Effect of low pH on glutamate uptake and release in isolated presynaptic endings from rat brain. Neurochem Res 28:715–721

    Article  CAS  PubMed  Google Scholar 

  28. Lowry O, Rosenbrough H, Farr H et al (1951) Protein measurements with Folin reagent. J Biol Chem 193:265–279

    CAS  PubMed  Google Scholar 

  29. Sheldon C, Diarra A, Cheng YM et al (2004) Sodium influx pathways during and after anoxia in rat hippocampal neurons. J Neurosci 24:11057–11069

    Article  CAS  PubMed  Google Scholar 

  30. Jang I-S, Jeong H-J, Akaike N (2001) Contribution of the Na–K–Cl cotransporter on GABAa receptor-mediated presynaptic depolarization in excitatory nerve terminals. J Neurosci 21:5962–5972

    CAS  PubMed  Google Scholar 

  31. Kubota H, Alle H, Betz H et al (2010) Presynaptic glycine receptors on hippocampal mossy fibers. Biochem Biophys Res Comm 393:587–591

    Article  CAS  PubMed  Google Scholar 

  32. McMahon HT, Barrie AP, Lowe M et al (1989) Glutamate release from guinea-pig synaptosomes: stimulation by reuptake-induced depolarization. J Neurochem 53:71–79

    Article  CAS  PubMed  Google Scholar 

  33. Kaila K, Lamsa K, Smirnov S et al (1997) Long-lasting GABA-mediated depolarization evoked by high-frequency stimulation in pyramidal neurons of rat hippocampal slice is attributable to a network-driven, bicarbonate-dependent K+ transient. J Neurosci 17:7662–7672

    CAS  PubMed  Google Scholar 

  34. Dingledine R, Borges K, Bowie D et al (1999) The glutamate receptor ion channels. Pharmacol Rev 51:7–61

    CAS  PubMed  Google Scholar 

  35. Breukel AIM, Besselsen E, Lopes da Silva FH et al (1998) A presynaptic N-methyl-D-aspartate autoreceptor in rat hippocampus modulating amino acid release from a cytoplasmic pool. Eur J Neurosci 10:106–114

    Article  CAS  PubMed  Google Scholar 

  36. Hare MF, Atchison WD (1992) Differentiation between alterations in plasma and mitochondrial membrane potential in synaptosomes using a carbocyanine dye. J Neurochem 58:1321–1329

    Article  CAS  PubMed  Google Scholar 

  37. Raiteri L, Raiteri M, Bonanno G (2002) Coexistence and function of different neurotransmitter transporters in the plasma membrane of CNS neurons. Prog Neurobiol 68:287–309

    Article  CAS  PubMed  Google Scholar 

  38. Bancila V, Cordeiro JM, Bloc A et al (2009) Nicotine-induced and depolarization-induced glutamate release from hippocampus mossy fibre synaptosomes: two distinct mechanisms. J Neurochem 110:570–580

    Article  CAS  PubMed  Google Scholar 

  39. Awatramani GB, Price GD, Trussell LO (2005) Modulation of transmitter release by presynaptic resting potential and background calcium levels. Neuron 48:109–121

    Article  CAS  PubMed  Google Scholar 

  40. File SE, Fluck E, Fernandes C (1999) Beneficial effects of glycine (bioglycine) on memory and attention in young and middle-aged adults. J Clin Psychopharmacol 19:506–512

    Article  CAS  PubMed  Google Scholar 

  41. Gusev EI, Skvortsova VI, Dambinova SA et al (2000) Neuroprotective effects of glycine for therapy of acute ischaemic stroke. Cerebrovasc Dis 10:49–60

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by CAEN-ISN (Committee in Aid of Neurochemistry of International Society of Neurochemistry) and The Physiological Society on “Centres of excellence” scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergei V. Fedorovich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Waseem, T.V., Fedorovich, S.V. Presynaptic Glycine Receptors Influence Plasma Membrane Potential and Glutamate Release. Neurochem Res 35, 1188–1195 (2010). https://doi.org/10.1007/s11064-010-0174-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-010-0174-7

Keywords

Navigation