Skip to main content

Advertisement

Log in

Dysregulation of Calcium Homeostasis in Alzheimer’s Disease

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The accumulation of oligomeric species of β-amyloid protein in the brain is considered to be a key factor that causes Alzheimer’s disease (AD). However, despite many years of research, the mechanism of neurotoxicity in AD remains obscure. Recent evidence strongly supports the theory that Ca2+ dysregulation is involved in AD. Amyloid proteins have been found to induce Ca2+ influx into neurons, and studies on transgenic mice suggest that this Ca2+ influx may alter neuronal excitability. The identification of a risk factor gene for AD that may be involved in the regulation of Ca2+ homeostasis and recent findings which suggest that presenilins may be involved in the regulation of intracellular Ca2+ stores provide converging lines of evidence that support the idea that Ca2+ dysregulation is a key step in the pathogenesis of AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Probst A, Langui D, Ulrich J (1991) Alzheimer’s disease: a description of the structural lesions. Brain Pathol 1:229–239. doi:10.1111/j.1750-3639.1991.tb00666.x

    Article  PubMed  CAS  Google Scholar 

  2. Masters CL, Simms G, Weinman NA et al (1985) Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc Natl Acad Sci USA 82:4245–4249. doi:10.1073/pnas.82.12.4245

    Article  PubMed  CAS  Google Scholar 

  3. Kang J, Lemaire HG, Unterbeck A et al (1987) The precursor of Alzheimer’s disease amyloid A4 protein resembles a cell-surface receptor. Nature 325:733–736. doi:10.1038/325733a0

    Article  PubMed  CAS  Google Scholar 

  4. Nunan J, Small DH (2000) Regulation of APP cleavage by alpha-, beta- and gamma-secretases. FEBS Lett 483:6–10. doi:10.1016/S0014-5793(00)02076-7

    Article  PubMed  CAS  Google Scholar 

  5. Walsh DM, Selkoe DJ (2007) A beta oligomers - a decade of discovery. J Neurochem 101:1172–1184. doi:10.1111/j.1471-4159.2006.04426.x

    Article  PubMed  CAS  Google Scholar 

  6. Small DH, McLean CA (1999) Alzheimer’s disease and the amyloid beta protein: What is the role of amyloid? J Neurochem 73:443–449. doi:10.1046/j.1471-4159.1999.0730443.x

    Article  PubMed  CAS  Google Scholar 

  7. Landfield PW (1987) ‘Increased calcium-current’ hypothesis of brain aging. Neurobiol Aging 8:346–347. doi:10.1016/0197-4580(87)90074-1

    Article  PubMed  CAS  Google Scholar 

  8. Landfield PW, Campbell LW, Hao SY et al (1989) Aging-related increases in voltage-sensitive, inactivating calcium currents in rat hippocampus. Implications for mechanisms of brain aging and Alzheimer’s disease. Ann N Y Acad Sci 568:95–105. doi:10.1111/j.1749-6632.1989.tb12495.x

    Article  PubMed  CAS  Google Scholar 

  9. Khachaturian ZS (1987) Hypothesis on the regulation of cytosol calcium concentration and the aging brain. Neurobiol Aging 8:345–346. doi:10.1016/0197-4580(87)90073-X

    Article  PubMed  CAS  Google Scholar 

  10. Etienne P, Baudry M (1987) Calcium dependent aspects of synaptic plasticity, excitatory amino acid neurotransmission, brain aging and schizophrenia: a unifying hypothesis. Neurobiol Aging 8:362–366. doi:10.1016/0197-4580(87)90081-9

    Article  PubMed  CAS  Google Scholar 

  11. Harris JK, DeLorenzo RJ (1987) Calcium and neuronal cytoskeletal proteins: alterations with aging. Neurobiol Aging 8:359–361. doi:10.1016/0197-4580(87)90080-7

    Article  PubMed  CAS  Google Scholar 

  12. Kuchibhotla KV, Goldman ST, Lattarulo CR et al (2008) Abeta plaques lead to aberrant regulation of calcium homeostasis in vivo resulting in structural and functional disruption of neuronal networks. Neuron 59:214–225. doi:10.1016/j.neuron.2008.06.008

    Article  PubMed  CAS  Google Scholar 

  13. Mattson MP, Cheng B, Davis D et al (1992) beta-Amyloid peptides destabilize calcium homeostasis and render human cortical neurons vulnerable to excitotoxicity. J Neurosci 12:376–389

    PubMed  CAS  Google Scholar 

  14. Mark RJ, Hensley K, Butterfield DA et al (1995) Amyloid beta-peptide impairs ion-motive ATPase activities: evidence for a role in loss of neuronal Ca2+ homeostasis and cell death. J Neurosci 15:6239–6249

    PubMed  CAS  Google Scholar 

  15. Butterfield DA, Hensley K, Harris M et al (1994) beta-Amyloid peptide free radical fragments initiate synaptosomal lipoperoxidation in a sequence-specific fashion: implications to Alzheimer’s disease. Biochem Biophys Res Commun 200:710–715. doi:10.1006/bbrc.1994.1508

    Article  PubMed  CAS  Google Scholar 

  16. Arispe N, Rojas E, Pollard HB (1993) Alzheimer disease amyloid beta protein forms calcium channels in bilayer membranes: blockade by tromethamine and aluminum. Proc Natl Acad Sci USA 90:567–571. doi:10.1073/pnas.90.2.567

    Article  PubMed  CAS  Google Scholar 

  17. Arispe N, Pollard HB, Rojas E (1996) Zn2+ interaction with Alzheimer amyloid beta protein calcium channels. Proc Natl Acad Sci USA 93:1710–1715. doi:10.1073/pnas.93.4.1710

    Article  PubMed  CAS  Google Scholar 

  18. Lin H, Zhu YJ, Lal R (1999) Amyloid beta protein (1–40) forms calcium-permeable, Zn2+-sensitive channel in reconstituted lipid vesicles. Biochemistry 38:11189–11196. doi:10.1021/bi982997c

    Article  PubMed  CAS  Google Scholar 

  19. Lin H, Bhatia R, Lal R (2001) Amyloid beta protein forms ion channels: implications for Alzheimer’s disease pathophysiology. FASEB J 15:2433–2444. doi:10.1096/fj.01-0377com

    Article  PubMed  CAS  Google Scholar 

  20. Quist A, Doudevski I, Lin H et al (2005) Amyloid ion channels: a common structural link for protein-misfolding disease. Proc Natl Acad Sci USA 102:10427–10432. doi:10.1073/pnas.0502066102

    Article  PubMed  CAS  Google Scholar 

  21. Lal R, Lin H, Quist AP (2007) Amyloid beta ion channel: 3D structure and relevance to amyloid channel paradigm. Biochim Biophys Acta 1768:1966–1975. doi:10.1016/j.bbamem.2007.04.021

    Article  PubMed  CAS  Google Scholar 

  22. Lashuel HA, Hartley D, Petre BM et al (2002) Neurodegenerative disease: amyloid pores from pathogenic mutations. Nature 418:291. doi:10.1038/418291a

    Article  PubMed  CAS  Google Scholar 

  23. Kayed R, Sokolov Y, Edmonds B et al (2004) Permeabilization of lipid bilayers is a common conformation-dependent activity of soluble amyloid oligomers in protein misfolding diseases. J Biol Chem 279:46363–46366. doi:10.1074/jbc.C400260200

    Article  PubMed  CAS  Google Scholar 

  24. Demuro A, Mina E, Kayed R et al (2005) Calcium dysregulation and membrane disruption as a ubiquitous neurotoxic mechanism of soluble amyloid oligomers. J Biol Chem 280:17294–17300. doi:10.1074/jbc.M500997200

    Article  PubMed  CAS  Google Scholar 

  25. Sokolov Y, Kozak JA, Kayed R et al (2006) Soluble amyloid oligomers increase bilayer conductance by altering dielectric structure. J Gen Physiol 128:637–647. doi:10.1085/jgp.200609533

    Article  PubMed  CAS  Google Scholar 

  26. Domingues A, Almeida S, e Silva EF et al (2007) Toxicity of beta-amyloid in HEK293 cells expressing NR1/NR2A or NR1/NR2B N-methyl-D-aspartate receptor subunits. Neurochem Int 50:872–880. doi:10.1016/j.neuint.2007.03.001

    Article  PubMed  CAS  Google Scholar 

  27. Snyder EM, Nong Y, Almeida CG et al (2005) Regulation of NMDA receptor trafficking by amyloid-beta. Nat Neurosci 8:1051–1058. doi:10.1038/nn1503

    Article  PubMed  CAS  Google Scholar 

  28. Small DH, Maksel D, Kerr ML et al (2007) The beta-amyloid protein of Alzheimer’s disease binds to membrane lipids but does not bind to the alpha7 nicotinic acetylcholine receptor. J Neurochem 101:1527–1538. doi:10.1111/j.1471-4159.2006.04444.x

    Article  PubMed  CAS  Google Scholar 

  29. Ye C, Ho-Pao CL, Kanazirska M et al (1997) Amyloid-beta proteins activate Ca(2+)-permeable channels through calcium-sensing receptors. J Neurosci Res 47:547–554. doi:10.1002/(SICI)1097-4547(19970301)47:5<547::AID-JNR10>3.0.CO;2-V

    Article  PubMed  CAS  Google Scholar 

  30. Good TA, Smith DO, Murphy RM (1996) Beta-amyloid peptide blocks the fast-inactivating K+ current in rat hippocampal neurons. Biophys J 70:296–304. doi:10.1016/S0006-3495(96)79570-X

    Article  PubMed  CAS  Google Scholar 

  31. Silei V, Fabrizi C, Venturini G et al (1999) Activation of microglial cells by PrP and beta-amyloid fragments raises intracellular calcium through L-type voltage sensitive calcium channels. Brain Res 818:168–170. doi:10.1016/S0006-8993(98)01272-4

    Article  PubMed  CAS  Google Scholar 

  32. Hou X, Parkington HC, Coleman HA et al (2007) Transthyretin oligomers induce calcium influx via voltage-gated calcium channels. J Neurochem 100:446–457. doi:10.1111/j.1471-4159.2006.04210.x

    Article  PubMed  CAS  Google Scholar 

  33. Sberna G, Saez-Valero J, Beyreuther K et al (1997) The amyloid beta-protein of Alzheimer’s disease increases acetylcholinesterase expression by increasing intracellular calcium in embryonal carcinoma P19 cells. J Neurochem 69:1177–1184

    PubMed  CAS  Google Scholar 

  34. Luo Z, Fuentes ME, Taylor P (1994) Regulation of acetylcholinesterase mRNA stability by calcium during differentiation from myoblasts to myotubes. J Biol Chem 269:27216–27223

    PubMed  CAS  Google Scholar 

  35. Saez-Valero J, Sberna G, McLean CA et al (1999) Molecular isoform distribution and glycosylation of acetylcholinesterase are altered in brain and cerebrospinal fluid of patients with Alzheimer’s disease. J Neurochem 72:1600–1608. doi:10.1046/j.1471-4159.1999.721600.x

    Article  PubMed  CAS  Google Scholar 

  36. Sberna G, Saez-Valero J, Li QX et al (1998) Acetylcholinesterase is increased in the brains of transgenic mice expressing the C-terminal fragment (CT100) of the beta-amyloid protein precursor of Alzheimer’s disease. J Neurochem 71:723–731

    Article  PubMed  CAS  Google Scholar 

  37. Fodero LR, Saez-Valero J, McLean CA et al (2002) Altered glycosylation of acetylcholinesterase in APP (SW) Tg2576 transgenic mice occurs prior to amyloid plaque deposition. J Neurochem 81:441–448. doi:10.1046/j.1471-4159.2002.00902.x

    Article  PubMed  CAS  Google Scholar 

  38. Saez-Valero J, de Ceballos ML, Small DH et al (2002) Changes in molecular isoform distribution of acetylcholinesterase in rat cortex and cerebrospinal fluid after intracerebroventricular administration of amyloid beta-peptide. Neurosci Lett 325:199–202. doi:10.1016/S0304-3940(02)00282-3

    Article  PubMed  CAS  Google Scholar 

  39. Larner AJ, Doran M (2006) Clinical phenotypic heterogeneity of Alzheimer’s disease associated with mutations of the presenilin-1 gene. J Neurol 253:139–158. doi:10.1007/s00415-005-0019-5

    Article  PubMed  CAS  Google Scholar 

  40. De Strooper B (2007) Loss-of-function presenilin mutations in Alzheimer disease. Talking Point on the role of presenilin mutations in Alzheimer disease. EMBO Rep 8:141–146. doi:10.1038/sj.embor.7400897

    Article  PubMed  CAS  Google Scholar 

  41. Steiner H (2008) The catalytic core of gamma-secretase: presenilin revisited. Curr Alzheimer Res 5:147–157. doi:10.2174/156720508783954677

    Article  PubMed  CAS  Google Scholar 

  42. Chan SL, Mayne M, Holden CP et al (2000) Presenilin-1 mutations increase levels of ryanodine receptors and calcium release in PC12 cells and cortical neurons. J Biol Chem 275:18195–18200. doi:10.1074/jbc.M000040200

    Article  PubMed  CAS  Google Scholar 

  43. Tu H, Nelson O, Bezprozvanny A et al (2006) Presenilins form ER Ca2+ leak channels, a function disrupted by familial Alzheimer’s disease-linked mutations. Cell 126:981–993. doi:10.1016/j.cell.2006.06.059

    Article  PubMed  CAS  Google Scholar 

  44. Landman N, Jeong SY, Shin SY et al (2006) Presenilin mutations linked to familial Alzheimer’s disease cause an imbalance in phosphatidylinositol 4, 5-bisphosphate metabolism. Proc Natl Acad Sci USA 103:19524–19529. doi:10.1073/pnas.0604954103

    Article  PubMed  CAS  Google Scholar 

  45. Cheung KH, Shineman D, Muller M et al (2008) Mechanism of Ca2+ disruption in Alzheimer’s disease by presenilin regulation of InsP3 receptor channel gating. Neuron 58:871–883. doi:10.1016/j.neuron.2008.04.015

    Article  PubMed  CAS  Google Scholar 

  46. Green KN, Demuro A, Akbari Y et al (2008) SERCA pump activity is physiologically regulated by presenilin and regulates amyloid beta production. J Cell Biol 181:1107–1116. doi:10.1083/jcb.200706171

    Article  PubMed  CAS  Google Scholar 

  47. Dreses-Werringloer U, Lambert JC, Vingtdeux V et al (2008) A polymorphism in CALHM1 influences Ca2+ homeostasis, Abeta levels, and Alzheimer’s disease risk. Cell 133:1149–1161. doi:10.1016/j.cell.2008.05.048

    Article  PubMed  CAS  Google Scholar 

  48. Storey E, Kinsella GJ, Slavin MJ (2001) The neuropsychological diagnosis of Alzheimer’s disease. J Alzheimers Dis 3:261–285

    PubMed  Google Scholar 

  49. Braak H, Braak E (1996) Development of Alzheimer-related neurofibrillary changes in the neocortex inversely recapitulates cortical myelogenesis. Acta Neuropathol 92:197–201. doi:10.1007/s004010050508

    Article  PubMed  CAS  Google Scholar 

  50. Braak H, Braak E (1995) Staging of Alzheimer’s disease-related neurofibrillary changes. Neurobiol Aging 16:271–278. doi:10.1016/0197-4580(95)00021-6

    Article  PubMed  CAS  Google Scholar 

  51. Small DH (2008) Network dysfunction in Alzheimer’s disease: does synaptic scaling drive disease progression? Trends Mol Med 14:103–108

    PubMed  CAS  Google Scholar 

  52. Turrigiano GG, Nelson SB (2004) Homeostatic plasticity in the developing nervous system. Nat Rev Neurosci 5:97–107. doi:10.1038/nrn1327

    Article  PubMed  CAS  Google Scholar 

  53. Stellwagen D, Malenka RC (2006) Synaptic scaling mediated by glial TNF-alpha. Nature 440:1054–1059. doi:10.1038/nature04671

    Article  PubMed  CAS  Google Scholar 

  54. Jia JP, Meng R, Sun YX et al (2005) Cerebrospinal fluid tau, Abeta1–42 and inflammatory cytokines in patients with Alzheimer’s disease and vascular dementia. Neurosci Lett 383:12–16. doi:10.1016/j.neulet.2005.03.051

    Article  PubMed  CAS  Google Scholar 

  55. Peng S, Wuu J, Mufson EJ et al (2005) Precursor form of brain-derived neurotrophic factor and mature brain-derived neurotrophic factor are decreased in the pre-clinical stages of Alzheimer’s disease. J Neurochem 93:1412–1421. doi:10.1111/j.1471-4159.2005.03135.x

    Article  PubMed  CAS  Google Scholar 

  56. Lopez-Arrieta JM, Birks J (2002) Nimodipine for primary degenerative, mixed and vascular dementia. Cochrane Database Syst Rev CD000147

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David H. Small.

Additional information

Special issue article in Honor of Dr. Graham Johnston.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Small, D.H. Dysregulation of Calcium Homeostasis in Alzheimer’s Disease. Neurochem Res 34, 1824–1829 (2009). https://doi.org/10.1007/s11064-009-9960-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-009-9960-5

Keywords

Navigation