Skip to main content

Advertisement

Log in

The Polyphenol Piceid Destabilizes Preformed Amyloid Fibrils and Oligomers In Vitro: Hypothesis on Possible Molecular Mechanisms

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is characterized by deposits of amyloid in various tissues. The neuronal cytotoxicity of Aβ peptides is attributed not only to various mechanisms but also to amyloid fibrils and soluble oligomeric intermediates. Consequently, finding molecules to prevent or reverse the oligomerization and fibrillization of Aβ could be of therapeutic value in the treatment of AD. We show that piceid, a polyphenol of the stilbene family, destabilized fibrils and oligomers to give back monomers that are not neurotoxic molecules. The mechanism of this destabilization could be a dynamic interaction between the polyphenol and the Aβ that could open the hydrophobic zipper and shift the reversible equilibrium “random coil⇔β-sheet” to the disordered structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Selkoe DJ (1997) Alzheimer’s disease: genotypes, phenotypes, and treatments. Science 275:630–631. doi:10.1126/science.275.5300.630

    Article  PubMed  CAS  Google Scholar 

  2. Murphy RM (2007) Kinetics of amyloid formation and membrane interaction with amyloidogenic proteins. Biochim Biophys Acta 1768:1923–1934. doi:10.1016/j.bbamem.2006.12.014 and references therein

    Article  PubMed  CAS  Google Scholar 

  3. Golde TE (2006) Disease modifying therapy for AD? J Neurochem 99:689–707. doi:10.1111/j.1471-4159.2006.04211.x

    Article  PubMed  CAS  Google Scholar 

  4. Rochet JC, Lansbury PT Jr (2000) Amyloid fibrillogenesis: themes and variations. Curr Opin Struct Biol 10:60–68. doi:10.1016/S0959-440X(99)00049-4 and references therein

    Article  PubMed  CAS  Google Scholar 

  5. Monji A, Utsumi H, Ueda T et al (2001) The relationship between the aggregational state of the amyloid-beta peptides and free radical generation by the peptides. J Neurochem 77:1425–1432. doi:10.1046/j.1471-4159.2001.00392.x

    Article  PubMed  CAS  Google Scholar 

  6. Sultana R, Newman S, Mohmmad-Abdul H et al (2004) Protective effect of the xanthate, D609, on Alzheimer’s amyloid beta-peptide (1–42)-induced oxidative stress in primary neuronal cells. Free Radic Res 38:449–458. doi:10.1080/1071576042000206478

    Article  PubMed  CAS  Google Scholar 

  7. Tabner BJ, El-Agnaf OM, Turnbull S et al (2005) Hydrogen peroxide is generated during the very early stages of aggregation of the amyloid peptides implicated in Alzheimer disease and familial British dementia. J Biol Chem 280:35789–35792. doi:10.1074/jbc.C500238200

    Article  PubMed  CAS  Google Scholar 

  8. Kagan BL, Hirakura Y, Azimov R et al (2002) The channel hypothesis of Alzheimer’s disease: current status. Peptides 23:1311–1315. doi:10.1016/S0196-9781(02)00067-0

    Article  PubMed  CAS  Google Scholar 

  9. Lauderback CM, Kanski J, Hackett JM et al (2002) Apolipoprotein E modulates Alzheimer’s Abeta(1–42)-induced oxidative damage to synaptosomes in an allele-specific manner. Brain Res 924:90–97. doi:10.1016/S0006-8993(01)03228-0

    Article  PubMed  CAS  Google Scholar 

  10. Oppermann UC, Salim S, Tjernberg LO et al (1999) Binding of amyloid beta-peptide to mitochondrial hydroxyacyl-CoA dehydrogenase (ERAB): regulation of an SDR enzyme activity with implications for apoptosis in Alzheimer’s disease. FEBS Lett 451:238–242. doi:10.1016/S0014-5793(99)00586-4

    Article  PubMed  CAS  Google Scholar 

  11. Holtzman DM (2004) In vivo effects of ApoE and clusterin on amyloid-beta metabolism and neuropathology. J Mol Neurosci 23:247–254. doi:10.1385/JMN:23:3:247

    Article  PubMed  CAS  Google Scholar 

  12. Sadowski M, Pankiewicz J, Scholtzova H et al (2004) A synthetic peptide blocking the apolipoprotein E/beta-amyloid binding mitigates beta-amyloid toxicity and fibril formation in vitro and reduces beta-amyloid plaques in transgenic mice. Am J Pathol 165:937–948

    PubMed  CAS  Google Scholar 

  13. Lustbader JW, Cirilli M, Lin C et al (2004) ABAD directly links Abeta to mitochondrial toxicity in Alzheimer’s disease. Science 304:448–452. doi:10.1126/science.1091230

    Article  PubMed  CAS  Google Scholar 

  14. Selkoe DJ (1999) Translating cell biology into therapeutic advances in Alzheimer’s disease. Nature 399:A23–A31. doi:10.1038/19866

    Article  PubMed  CAS  Google Scholar 

  15. Yankner BA (1996) Mechanisms of neuronal degeneration in Alzheimer’s disease. Neuron 16:921–932. doi:10.1016/S0896-6273(00)80115-4

    Article  PubMed  CAS  Google Scholar 

  16. Pike CJ, Walencewicz AJ, Glabe CG et al (1991) In vitro aging of beta-amyloid protein causes peptide aggregation and neurotoxicity. Brain Res 563:311–314. doi:10.1016/0006-8993(91)91553-D

    Article  PubMed  CAS  Google Scholar 

  17. Pike CJ, Burdick D, Walencewicz AJ et al (1993) Neurodegeneration induced by beta-amyloid peptides in vitro: the role of peptide assembly state. J Neurosci 13:1676–1687

    PubMed  CAS  Google Scholar 

  18. Lorenzo A, Yankner BA (1994) Beta-amyloid neurotoxicity requires fibril formation and is inhibited by congo red. Proc Natl Acad Sci USA 91:12243–12247. doi:10.1073/pnas.91.25.12243

    Article  PubMed  CAS  Google Scholar 

  19. Selkoe DJ (2004) Cell biology of protein misfolding: the examples of Alzheimer’s and Parkinson’s diseases. Nat Cell Biol 6:1054–1061. doi:10.1038/ncb1104-1054

    Article  PubMed  CAS  Google Scholar 

  20. Lambert MP, Barlow AK, Chromy BA et al (1998) Diffusible, nonfibrillar ligands derived from Abeta1–42 are potent central nervous system neurotoxins. Proc Natl Acad Sci USA 95:6448–6453. doi:10.1073/pnas.95.11.6448

    Article  PubMed  CAS  Google Scholar 

  21. Walsh DM, Hartley DM, Kusumoto Y et al (1999) Amyloid beta-protein fibrillogenesis. Structure and biological activity of protofibrillar intermediates. J Biol Chem 274:25945–25952. doi:10.1074/jbc.274.36.25945

    Article  PubMed  CAS  Google Scholar 

  22. Bhatia R, Lin H, Lal R (2000) Fresh and globular amyloid beta protein (1–42) induces rapid cellular degeneration: evidence for AbetaP channel-mediated cellular toxicity. FASEB J 14:1233–1243

    PubMed  CAS  Google Scholar 

  23. Zhu YJ, Lin H, Lal R (2000) Fresh and nonfibrillar amyloid beta protein(1–40) induces rapid cellular degeneration in aged human fibroblasts: evidence for AbetaP-channel-mediated cellular toxicity. FASEB J 14:1244–1254

    PubMed  CAS  Google Scholar 

  24. Klein WL, Krafft GA, Finch CE (2001) Targeting small Abeta oligomers: the solution to an Alzheimer’s disease conundrum? Trends Neurosci 24:219–224. doi:10.1016/S0166-2236(00)01749-5

    Article  PubMed  CAS  Google Scholar 

  25. Kim HJ, Chae SC, Lee DK et al (2003) Selective neuronal degeneration induced by soluble oligomeric amyloid beta protein. FASEB J 17:118–120

    PubMed  CAS  Google Scholar 

  26. Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297:353–356. doi:10.1126/science.1072994 Erratum in: Science. 2002. 297:2209 and comment in: Science. 2002 298:962–964

    Article  PubMed  CAS  Google Scholar 

  27. Kayed R, Head E, Thompson JL et al (2003) Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 300:486–489. doi:10.1126/science.1079469

    Article  PubMed  CAS  Google Scholar 

  28. Ono K, Yoshiike Y, Taskashima A et al (2003) Potent anti-amyloidogenic and fibril-destabilizing effects of polyphenols in vitro: implications for the prevention and therapeutics of Alzheimer’s disease. J Neurochem 87:172–181. doi:10.1046/j.1471-4159.2003.01976.x

    Article  PubMed  CAS  Google Scholar 

  29. Ono K, Hasegawa K, Naiki H et al (2004) Curcumin has potent anti-amyloidogenic effects for Alzheimer’s beta-amyloid fibrils in vitro. J Neurosci Res 75:742–750. doi:10.1002/jnr.20025

    Article  PubMed  CAS  Google Scholar 

  30. Ono K, Hasegawa K, Naiki H et al (2004) Anti-amyloidogenic activity of tannic acid and its activity to destabilize Alzheimer’s beta-amyloid fibrils in vitro. Biochim Biophys Acta 1690:193–202

    PubMed  CAS  Google Scholar 

  31. Rivière C, Richard T, Quentin L et al (2007) Inhibitory activity of stilbenes on Alzheimer’s beta-amyloid fibrils in vitro. Bioorg Med Chem 15:1160–1167. doi:10.1016/j.bmc.2006.09.069

    Article  PubMed  CAS  Google Scholar 

  32. Rivière C, Richard T, Vitrac X et al (2008) New polyphenols active on beta-amyloid aggregation. Bioorg Med Chem Lett 18:828–831. doi:10.1016/j.bmcl.2007.11.028

    Article  PubMed  CAS  Google Scholar 

  33. Yang F, Lim GP, Begum AN et al (2005) Curcumin inhibits formation of amyloid beta oligomers and fibrils, binds plaques, and reduces amyloid in vivo. J Biol Chem 280:5892–5901. doi:10.1074/jbc.M404751200

    Article  PubMed  CAS  Google Scholar 

  34. Bastianetto S, Yao ZX, Papadopoulos V et al (2006) Neuroprotective effects of green and black teas and their catechin gallate esters against beta-amyloid-induced toxicity. Eur J NeuroSci 23:55–64. doi:10.1111/j.1460-9568.2005.04532.x

    Article  PubMed  Google Scholar 

  35. Hubbard GP, Wolffram S, Lovegrove JA et al (2003) The role of polyphenolic compounds in the diet as inhibitors of platelet function. Proc Nutr Soc 62:469–478. doi:10.1079/PNS2003253

    Article  PubMed  CAS  Google Scholar 

  36. Scalbert A, Manach C, Morand C et al (2005) Dietary polyphenols and the prevention of diseases. Crit Rev Food Sci Nutr 45:287–306. doi:10.1080/1040869059096

    Article  PubMed  CAS  Google Scholar 

  37. Yang CS, Prabhu S, Landau J (2001) Prevention of carcinogenesis by tea polyphenols. Drug Metab Rev 33:237–253. doi:10.1081/DMR-120000651

    Article  PubMed  CAS  Google Scholar 

  38. Manach C, Scalbert A, Morand C et al (2004) Polyphenols: food sources and bioavailability. Am J Clin Nutr 79:727–747

    PubMed  CAS  Google Scholar 

  39. Rossi L, Mazzitelli S, Arciello M et al. (2008) Benefits from dietary polyphenols for brain aging and Alzheimer’s disease. Neurochem Res (Published online)

  40. Richard T, Verge S, Berke B et al (2001) NMR and simulated annealing investigations of bradykinin in presence of polyphenols. J Biomol Struct Dyn 18:627–637

    PubMed  CAS  Google Scholar 

  41. Charlton AJ, Baxter NJ, Khan ML et al (2002) Polyphenol/peptide binding and precipitation. J Agric Food Chem 50:1593–1601. doi:10.1021/jf010897z

    Article  PubMed  CAS  Google Scholar 

  42. Charlton AJ, Haslam E, Williamson MP (2002) Multiple conformations of the proline-rich protein/epigallocatechin gallate complex determined by time-averaged nuclear Overhauser effects. J Am Chem Soc 124:9899–9905. doi:10.1021/ja0126374

    Article  PubMed  CAS  Google Scholar 

  43. Vergé S, Richard T, Moreau S et al (2002) First observation of solution structures of bradykinin-penta-O-galloyl-d-glucopyranose complexes as determined by NMR and simulated annealing. Biochim Biophys Acta 1571:89–101

    PubMed  Google Scholar 

  44. Richard T, Vitrac X, Merillon JM et al (2005) Role of peptide primary sequence in polyphenol-protein recognition: an example with neurotensin. Biochim Biophys Acta 1726:238–243

    PubMed  CAS  Google Scholar 

  45. Murray NJ, Williamson MP, Lilley TH et al (1994) Study of the interaction between salivary proline-rich proteins and a polyphenol by 1H-NMR spectroscopy. Eur J Biochem 219:923–935. doi:10.1111/j.1432-1033.1994.tb18574.x

    Article  PubMed  CAS  Google Scholar 

  46. Haslam E (1974) Polyphenol–protein interactions. Biochem J 139:285–288

    PubMed  CAS  Google Scholar 

  47. Richard T, Delaunay JC, Merillon JM et al (2003) Is the C-terminal region of bradykinin the binding site of polyphenols? J Biomol Struct Dyn 21:379–385

    PubMed  CAS  Google Scholar 

  48. Simon C, Barathieu K, Laguerre M et al (2003) Three-dimensional structure and dynamics of wine tannin-saliva protein complexes a multitechnique approach. Biochemistry 42:10385–10395. doi:10.1021/bi034354p

    Article  PubMed  CAS  Google Scholar 

  49. Klegeris A, Walker DG, McGeer PL (1994) Activation of macrophages by Alzheimer beta amyloid peptide. Biochem Biophys Res Commun 199:984–991. doi:10.1006/bbrc.1994.1326

    Article  PubMed  CAS  Google Scholar 

  50. Pike CJ, Walencewicz-Wasserman AJ, Kosmoski J et al (1995) Structure-activity analyses of beta-amyloid peptides: contributions of the beta 25–35 region to aggregation and neurotoxicity. J Neurochem 64:253–265

    Article  PubMed  CAS  Google Scholar 

  51. Hughes E, Burke RM, Doig AJ (2000) Inhibition of toxicity in the beta-amyloid peptide fragment beta-(25–35) using N-methylated derivatives: a general strategy to prevent amyloid formation. J Biol Chem 275:25109–25115. doi:10.1074/jbc.M003554200

    Article  PubMed  CAS  Google Scholar 

  52. Naiki H, Higuchi K, Hosokawa M et al (1989) Fluorometric determination of amyloid fibrils in vitro using the fluorescent dye thioflavine T. Anal Biochem 177:244–249. doi:10.1016/0003-2697(89)90046-8

    Article  PubMed  CAS  Google Scholar 

  53. Chromy BA, Nowak RJ, Lambert MP et al (2003) Self-assembly of Abeta (1–42) into globular neurotoxins. Biochemistry 42:12749–12760. doi:10.1021/bi030029q

    Article  PubMed  CAS  Google Scholar 

  54. Atamna H, Boyle K (2006) Amyloid-beta peptide binds with heme to form a peroxidase: relationship to the cytopathologies of Alzheimer’s disease. Proc Natl Acad Sci USA 103:3381–3386. doi:10.1073/pnas.0600134103

    Article  PubMed  CAS  Google Scholar 

  55. Walsh DM, Lomakin A, Benedek GB et al (1997) Amyloid beta-protein fibrillogenesis. Detection of a protofibrillar intermediate. J Biol Chem 272:22364–22372. doi:10.1074/jbc.272.35.22364

    Article  PubMed  CAS  Google Scholar 

  56. Chimon S, Shaibat MA, Jones CR et al (2007) Evidence of fibril-like beta-sheet structures in a neurotoxic amyloid intermediate of Alzheimer’s beta-amyloid. Nat Struct Mol Biol 14:1157–1164. doi:10.1038/nsmb1345

    Article  CAS  Google Scholar 

  57. Pallitto MM, Murphy RM (2001) A mathematical model of the kinetics of beta-amyloid fibril growth from the denatured state. Biophys J 81:1805–1822

    Article  PubMed  CAS  Google Scholar 

  58. Hasegawa K, Ono K, Yamada M et al (2002) Kinetic modeling and determination of reaction constants of Alzheimer’s beta-amyloid fibril extension and dissociation using surface plasmon resonance. Biochemistry 41:13489–13498. doi:10.1021/bi020369w

    Article  PubMed  CAS  Google Scholar 

  59. Ono K, Hirohata M, Yamada M (2005) Ferulic acid destabilizes preformed beta-amyloid fibrils in vitro. Biochem Biophys Res Commun 336:444–449. doi:10.1016/j.bbrc.2005.08.148

    Article  PubMed  CAS  Google Scholar 

  60. Petkova AT, Ishii Y, Balbach JJ et al (2002) A structural model for Alzheimer’s beta-amyloid fibrils based on experimental constraints from solid state NMR. Proc Natl Acad Sci USA 99:16742–16747. doi:10.1073/pnas.262663499

    Article  PubMed  CAS  Google Scholar 

  61. Petkova AT, Yau WM, Tycko R (2006) Experimental constraints on quaternary structure in Alzheimer’s beta-amyloid fibrils. Biochemistry 45:498–512. doi:10.1021/bi051952q

    Article  PubMed  CAS  Google Scholar 

  62. Lührs T, Ritter C, Adrian M et al (2005) 3D structure of Alzheimer’s amyloid-beta(1–42) fibrils. Proc Natl Acad Sci USA 102:17342–17347. doi:10.1073/pnas.0506723102

    Article  PubMed  CAS  Google Scholar 

  63. Terzi E, Hölzemann G, Seelig J (1994) Alzheimer beta-amyloid peptide 25–35: electrostatic interactions with phospholipid membranes. Biochemistry 33:7434–7441. doi:10.1021/bi00189a051

    Article  PubMed  CAS  Google Scholar 

  64. Konno T (2001) Amyloid-induced aggregation and precipitation of soluble proteins: an electrostatic contribution of the Alzheimer’s beta (25–35) amyloid fibril. Biochemistry 40:2148–2154. doi:10.1021/bi002156h

    Article  PubMed  CAS  Google Scholar 

  65. Ippel JH, Olofsson A, Schleucher J et al (2002) Probing solvent accessibility of amyloid fibrils by solution NMR spectroscopy. Proc Natl Acad Sci USA 99:8648–8653. doi:10.1073/pnas.132098999

    Article  PubMed  CAS  Google Scholar 

  66. Kellermayer MS, Grama L, Karsai A et al (2005) Reversible mechanical unzipping of amyloid beta-fibrils. J Biol Chem 280:8464–8470. doi:10.1074/jbc.M411556200

    Article  PubMed  CAS  Google Scholar 

  67. Zeng H, Zhang Y, Peng L et al (2001) Nicotine and amyloid formation. Biol Psychiatry 49:248–257. doi:10.1016/S0006-3223(00)01111-2

    Article  PubMed  CAS  Google Scholar 

  68. Liu R, McAllister C, Lyubchenko Y et al (2004) Residues 17–20 and 30–35 of beta-amyloid play critical roles in aggregation. J Neurosci Res 75:162–171. doi:10.1002/jnr.10859

    Article  PubMed  CAS  Google Scholar 

  69. Pawar AP, Dubay KF, Zurdo J et al (2005) Prediction of “aggregation-prone” and “aggregation-susceptible” regions in proteins associated with neurodegenerative diseases. J Mol Biol 350:379–392. doi:10.1016/j.jmb.2005.04.016

    Article  PubMed  CAS  Google Scholar 

  70. Wei G, Shea JE (2006) Effects of solvent on the structure of the Alzheimer amyloid-beta(25–35) peptide. Biophys J 91:1638–1647. doi:10.1529/biophysj.105.079186 and references therein

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to SERCOMI for Electron Microscopy and to Dr. Ray Cooke for reading the manuscript. Financial support for this study came in part from the “Conseil Régional d’Aquitaine”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Pierre Monti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rivière, C., Delaunay, JC., Immel, F. et al. The Polyphenol Piceid Destabilizes Preformed Amyloid Fibrils and Oligomers In Vitro: Hypothesis on Possible Molecular Mechanisms. Neurochem Res 34, 1120–1128 (2009). https://doi.org/10.1007/s11064-008-9883-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-008-9883-6

Keywords

Navigation