Skip to main content

Advertisement

Log in

Fluorocitrate, an Inhibitor of Glial Metabolism, Inhibits the Up-Regulation of NOS Expression, Activity and NO Production in the Spinal Cord Induced by Formalin Test in Rats

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Previous experiments have suggested that nitric oxide plays an important role in nociceptive transmission in the spinal cord. In order to explore the involvement of glia in the NO-mediated nociceptive transmission, the present study was undertaken to investigate the effect of fluorocitrate (FC), an inhibitor of glial metabolism, on NOS expression and activity and NO production in the spinal cord during the process of peripheral inflammatory pain and hyperalgesia induced by formalin test in rats. Sixty adult male Sprague–Dawley rats were randomly assigned into sham, formalin, formalin + normal saline (NS), and formalin + FC groups. The NOS expression, NOS activity and NO production was detected by NADPH-d histochemistry staining, NOS and NO assay kit, respectively. It was found that formalin test significantly up-regulated NOS expression and activity and NO production in the laminae I–II of the dorsal horn and the grey matter around the central canal in the lumbar spinal cord at 1 h after the formalin test. Selective inhibition of glia metabolism with intrathecal administration of FC (1 nmol) significantly inhibited the up-regulation in NOS expression and activity and NO production normally induced by the formalin test, which was represented with decreases in the number and density of the NADPH-d positive cells in the dorsal horn and grey matter around the central canal, and decrease in density of NADPH-d positive neuropil in the dorsal horn in formalin + FC group compared with formalin group. The results suggested that glia may be involved in the NO-mediated nociceptive transmission in the spinal cord.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Tassorelli C, Greco R, Wang D et al (2003) Nitroglycerin induces hyperalgesia in rats-a time-course study. Eur J Pharmacol 464:159–162. doi:10.1016/S0014-2999(03)01421-3

    Article  PubMed  CAS  Google Scholar 

  2. Inoue T, Mashimo T, Shibata M et al (1998) Rapid development of nitric oxide-induced hyperalgesia depends on an alternate to the cGMP-mediated pathway in the rat neuropathic pain model. Brain Res 792:263–270. doi:10.1016/S0006-8993(98)00147-4

    Article  PubMed  CAS  Google Scholar 

  3. Holguin A, O’Connor KA, Biedenkapp J et al (2004) HIV-1 gp120 stimulates proinflammatory cytokine-mediated pain facilitation via activation of nitric oxide synthase-I (nNOS). Pain 110:517–530. doi:10.1016/j.pain.2004.02.018

    Article  PubMed  CAS  Google Scholar 

  4. Zanchet EM, Longo I, Cury Y (2004) Involvement of spinal neurokinins, excitatory amino acids, proinflammatory cytokines, nitric oxide and prostanoids in pain facilitation induced by Phoneutria nigriventer spider venom. Brain Res 1021:101–111. doi:10.1016/j.brainres.2004.06.041

    Article  PubMed  CAS  Google Scholar 

  5. Lui PW, Lee CH (2004) Preemptive effects of intrathecal cyclooxygenase inhibitor or nitric oxide synthase inhibitor on thermal hypersensitivity following peripheral nerve injury. Life Sci 75:2527–2538. doi:10.1016/j.lfs.2004.04.033

    Article  PubMed  CAS  Google Scholar 

  6. Sun XC, Li WB, Li SQ et al (2003) Intrathecal injection of Sar9, Met(O2)11-substance P, neurokinin-1 receptor agonist, increases nitric oxide synthase expression and nitric oxide production in the rat spinal cord. Sheng Li Xue Bao 55:677–683

    PubMed  CAS  Google Scholar 

  7. Zeng JB, Li WB, Li QJ et al (2001) MK-801 attenuates NOS expression and NO content in the spinal cord of rats with inflammatory pain. Sheng Li Xue Bao 53:55–60

    PubMed  CAS  Google Scholar 

  8. Watkins LR, Maier SF (2002) Beyond neurons: evidence that immune and glial cells contribute to pathological pain states. Physiol Rev 82:981–1011

    PubMed  CAS  Google Scholar 

  9. Schoeniger-Skinner DK, Ledeboer A, Frank MG et al (2007) Interleukin-6 mediates low-threshold mechanical allodynia induced by intrathecal HIV-1 envelope glycoprotein gp120. Brain Behav Immun 21:660–667. doi:10.1016/j.bbi.2006.10.010

    Article  PubMed  CAS  Google Scholar 

  10. Lee IH, Lee IO (2005) Preemptive effect of intravenous ketamine in the rat: concordance between pain behavior and spinal fos-like immunoreactivity. Acta Anaesthesiol Scand 49:160–165. doi:10.1111/j.1399-6576.2004.00568.x

    Article  PubMed  CAS  Google Scholar 

  11. Richard S, Engblom D, Paues J et al (2005) Activation of the parabrachio-amygdaloid pathway by immune challenge or spinal nociceptive input: a quantitative study in the rat using Fos immunohistochemistry and retrograde tract tracing. J Comp Neurol 481:210–219. doi:10.1002/cne.20384

    Article  PubMed  Google Scholar 

  12. Meller ST, Dykstra C, Grzybycki D et al (1994) The possible role of glia in nociceptive processing and hyperalgesia in the spinal cord of the rat. Neuropharmacology 33:1471–1478. doi:10.1016/0028-3908(94)90051-5

    Article  PubMed  CAS  Google Scholar 

  13. Watkins LR, Martin D, Ulrich P et al (1997) Evidence for the involvement of spinal cord glia in subcutaneous formalin induced hyperalgesia in the rat. Pain 71:225–235. doi:10.1016/S0304-3959(97)03369-1

    Article  PubMed  CAS  Google Scholar 

  14. Zimmermann M (1983) Ethical guidelines for investigations of experimental pain in conscious animals. Pain 16:109–110. doi:10.1016/0304-3959(83)90201-4

    Article  PubMed  CAS  Google Scholar 

  15. Mestre C, Pélissier T, Fialip J et al (1994) A method to perform direct transcutaneous intrathecal injection in rats. J Pharmacol Toxicol Methods 32:197–200. doi:10.1016/1056-8719(94)90087-6

    Article  PubMed  CAS  Google Scholar 

  16. Lalatta-Costerbosa G, Mazzoni M, Clavenzani P et al (2007) Nitric oxide synthase immunoreactivity and NADPH-d histochemistry in the enteric nervous system of Sarda breed sheep with different PrP genotypes in whole-mount and cryostat preparations. J Histochem Cytochem 55:387–401. doi:10.1369/jhc.6A7052.2007

    Article  PubMed  CAS  Google Scholar 

  17. Labombarda F, Gonzalez S, Roig P et al (2000) Modulation of NADPH-diaphorase and glial fibrillary acidic protein by progesterone in astrocytes from normal and injured rat spinal cord. J Steroid Biochem Mol Biol 73:159–169. doi:10.1016/S0960-0760(00)00064-9

    Article  PubMed  CAS  Google Scholar 

  18. Gonzalez Deniselle MC, Gonzalez SL, Lima AE et al (1999) The 21-aminosteroid U-74389F attenuates hyperexpression of GAP-43 and NADPH-diaphorase in the spinal cord of wobbler mouse, a model for amyotrophic lateral sclerosis. Neurochem Res 24:1–8. doi:10.1023/A:1020918310281

    Article  PubMed  CAS  Google Scholar 

  19. Vincent SR, Kimura H (1992) Histochemical mapping of nitric oxide synthase in the rat brain. Neuroscience 46:755–784. doi:10.1016/0306-4522(92)90184-4

    Article  PubMed  CAS  Google Scholar 

  20. Zhao H-G, Sun X-C, Xian X-H et al (2007) The role of nitric oxide in the neuroprotection of limb ischemic preconditioning in rats. Neurochem Res 32:1919–1926. doi:10.1007/s11064-007-9381-2

    Article  PubMed  CAS  Google Scholar 

  21. Feng M, Liu L, Guo Z et al (2008) Gene transfer of dimethylarginine dimethylaminohydrolase-2 improves the impairments of DDAH/ADMA/NOS/NO pathway in endothelial cells induced by lysophosphatidylcholine. Eur J Pharmacol 584:49–56. doi:10.1016/j.ejphar.2008.01.029

    Article  PubMed  CAS  Google Scholar 

  22. Porro CA, Cavazzuti M (1993) Spatial and temporal aspects of spinal cord and brainstem activation in the formalin pain model. Prog Neurobiol 41:565–607. doi:10.1016/0301-0082(93)90044-S

    Article  PubMed  CAS  Google Scholar 

  23. Guo W, Wang H, Watanabe M et al (2007) Glial-cytokine-neuronal interactions underlying the mechanisms of persistent pain. J Neurosci 27:6006–6018. doi:10.1523/JNEUROSCI.0176-07.2007

    Article  PubMed  CAS  Google Scholar 

  24. Wieseler-Frank J, Maier SF, Watkins LR (2004) Glial activation and pathological pain. Neurochem Int 45:389–395. doi:10.1016/j.neuint.2003.09.009

    Article  PubMed  CAS  Google Scholar 

  25. Watkins LR, Milligan ED, Maier SF (2001) Spinal cord glia: new players in pain. Pain 93:201–205. doi:10.1016/S0304-3959(01)00359-1

    Article  PubMed  CAS  Google Scholar 

  26. Milligan ED, Twining C, Chacur M et al (2003) Spinal glia and proinflammatory cytokines mediate mirror-image neuropathic pain in rats. J Neurosci 23:1026–1040

    PubMed  CAS  Google Scholar 

  27. Sweitzer SM, Schubert P, DeLeo JA (2001) Propentofylline, a glial modulating agent, exhibits antiallodynic properties in a rat model of neuropathic pain. J Pharmacol Exp Ther 297:1210–1217

    PubMed  CAS  Google Scholar 

  28. Watkins LR, Milligan ED, Maier SF (2001) Glial activation: a driving force for pathological pain. Trends Neurosci 24:450–455. doi:10.1016/S0166-2236(00)01854-3

    Article  PubMed  CAS  Google Scholar 

  29. Raghavendra V, Tanga FY, DeLeo JA (2004) Complete Freunds adjuvant-induced peripheral inflammation evokes glial activation and proinflammatory cytokine expression in the CNS. Eur J Neurosci 20:467–473. doi:10.1111/j.1460-9568.2004.03514.x

    Article  PubMed  Google Scholar 

  30. Tanga FY, Raghavendra V, DeLeo JA (2004) Quantitative real-time RT-PCR assessment of spinal microglial and astrocytic activation markers in a rat model of neuropathic pain. Neurochem Int 45:397–407. doi:10.1016/j.neuint.2003.06.002

    Article  PubMed  CAS  Google Scholar 

  31. Fu KY, Light AR, Matsushima GK et al (1999) Microglial reactions after subcutaneous formalin injection into the rat hind paw. Brain Res 825:59–67. doi:10.1016/S0006-8993(99)01186-5

    Article  PubMed  CAS  Google Scholar 

  32. Sweitzer SM, Colburn RW, Rutkowski M et al (1999) Acute peripheral inflammation induces moderate glial activation and spinal IL-1beta expression that correlates with pain behavior in the rat. Brain Res 829:209–221. doi:10.1016/S0006-8993(99)01326-8

    Article  PubMed  CAS  Google Scholar 

  33. Kim D, Kim MA, Cho IH et al (2007) A critical role of toll-like receptor 2 in nerve injury-induced spinal cord glial cell activation and pain hypersensitivity. J Biol Chem 282:14975–14983. doi:10.1074/jbc.M607277200

    Article  PubMed  CAS  Google Scholar 

  34. Ohtori S, Takahashi K, Moriya H et al (2004) TNF-alpha and TNF-alpha receptor type 1 upregulation in glia and neurons after peripheral nerve injury: studies in murine DRG and spinal cord. Spine 29:1082–1088. doi:10.1097/00007632-200405150-00006

    Article  PubMed  Google Scholar 

  35. Popovich PG, Wei P, Stokes BT (1997) Cellular inflammatory response after spinal cord injury in Sprague–Dawley and Lewis rats. J Comp Neurol 377:443–464. doi:10.1002/(SICI)1096-9861(19970120)377:3<443::AID-CNE10>3.0.CO;2-S

    Article  PubMed  CAS  Google Scholar 

  36. Zhang RX, Liu B, Wang L et al (2005) Spinal glial activation in a new rat model of bone cancer pain produced by prostate cancer cell inoculation of the tibia. Pain 118:125–136. doi:10.1016/j.pain.2005.08.001

    Article  PubMed  CAS  Google Scholar 

  37. Schwei MJ, Honore P, Rogers SD et al (1999) Neurochemical and cellular reorganization of the spinal cord in a murine model of bone cancer pain. J Neurosci 19:10886–10897

    PubMed  CAS  Google Scholar 

  38. Milligan ED, O’Connor KA, Nguyen KT et al (2001) Intrathecal HIV-1 envelope glycoprotein gp120 induces enhanced pain states mediated by spinal cord proinflammatory cytokines. J Neurosci 21:2808–2819

    PubMed  CAS  Google Scholar 

  39. Milligan ED, Mehmert KK, Hinde JL et al (2000) Thermal hyperalgesia and mechanical allodynia produced by intrathecal administration of the human immunodeficiency virus-1 (HIV-1) envelope glycoprotein, gp120. Brain Res 861:105–116. doi:10.1016/S0006-8993(00)02050-3

    Article  PubMed  CAS  Google Scholar 

  40. Catania MV, Giuffrida R, Seminara G et al (2003) Upregulation of neuronal nitric oxide synthase in in vitro stellate astrocytes and in vivo reactive astrocytes after electrically induced status epilepticus. Neurochem Res 28:607–615. doi:10.1023/A:1022841911265

    Article  PubMed  Google Scholar 

  41. Haydon PG (2001) GLIA: listening and talking to the synapse. Nat Rev Neurosci 2:185–193. doi:10.1038/35058528

    Article  PubMed  CAS  Google Scholar 

  42. Urban MO, Gebhart GF (1999) Central mechanisms in pain. Med Clin North Am 83:585–596. doi:10.1016/S0025-7125(05)70125-5

    Article  PubMed  CAS  Google Scholar 

  43. Light AR, Perl ER (1979) Spinal termination of functionally identified primary afferent neurons with slowly conducting myelinated fibers. J Comp Neurol 186:133–150. doi:10.1002/cne.901860203

    Article  PubMed  CAS  Google Scholar 

  44. Nahin RL, Madsen AM, Giesler GJ Jr (1983) Anatomical and physiological studies of the gray matter surrounding the spinal cord central canal. J Comp Neurol 220:321–335. doi:10.1002/cne.902200306

    Article  PubMed  CAS  Google Scholar 

  45. Gonzalez S, Labombarda F, Gonzalez Deniselle MC et al (2001) Glucocorticoid effects on Fos immunoreactivity and NADPH-diaphorase histochemical staining following spinal cord injury. Brain Res 912:144–153. doi:10.1016/S0006-8993(01)02717-2

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This study was supported by grants from The Department of Science and Technology of Hebei province of China (No.: 98276196D, 04276101D-77).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Bin Li.

Additional information

X.-C. Sun, W.-N. Chen and S.-Q. Li contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, XC., Chen, WN., Li, SQ. et al. Fluorocitrate, an Inhibitor of Glial Metabolism, Inhibits the Up-Regulation of NOS Expression, Activity and NO Production in the Spinal Cord Induced by Formalin Test in Rats. Neurochem Res 34, 351–359 (2009). https://doi.org/10.1007/s11064-008-9785-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-008-9785-7

Keywords

Navigation