Skip to main content

Advertisement

Log in

Chronic NMDA Administration Increases Neuroinflammatory Markers in Rat Frontal Cortex: Cross-Talk Between Excitotoxicity and Neuroinflammation

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Chronic N-Methyl-d-aspartate (NMDA) administration, a model of excitotoxicity, and chronic intracerebroventricular lipopolysaccharide infusion, a model of neuroinflammation, are reported to upregulate arachidonic acid incorporation and turnover in rat brain phospholipids as well as enzymes involved in arachidonic acid metabolism. This suggests cross-talk between signaling pathways of excitotoxicity and of neuroinflammation, involving arachidonic acid. To test whether chronic NMDA administrations to rats can upregulate brain markers of neuroinflammation, NMDA (25 mg/kg i.p.) or vehicle (1 ml saline/kg i.p.) was administered daily to adult male rats for 21 days. Protein and mRNA levels of cytokines and other inflammatory markers were measured in the frontal cortex using immunoblot and real-time PCR. Compared with chronic vehicle, chronic NMDA significantly increased protein and mRNA levels of interleukin-1beta, tumor necrosis factor alpha, glial fibrillary acidic protein and inducible nitric oxide synthase. Chronic NMDA receptor overactivation results in increased levels of neuroinflammatory markers in the rat frontal cortex, consistent with cross-talk between excitotoxicity and neuroinflammation. As both processes have been reported in a number of human brain diseases, NMDA receptor inhibitors might be of use in treating neuroinflammation in these diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

NMDA:

N-Methyl-d-aspartate

IL-1β:

Interleukin-1beta

TNFα:

Tumor necrosis factor alpha

GFAP:

Glial fibrillary acid protein

iNOS:

Inducible nitric oxide synthase

LPS:

Lipopolysaccharide

NR:

N-Methyl-d-aspartate receptor

AP-2:

Activator protein-2

NF-κB:

Nuclear factor-kappa B

References

  1. Wenthold RJ, Sans N, Standley S, Prybylowski K, Petralia RS (2003) Early events in the trafficking of N-methyl-D-aspartate (NMDA) receptors. Biochem Soc Trans 31:885–888

    Article  PubMed  CAS  Google Scholar 

  2. Verkhratsky A, Kirchhoff F (2007) NMDA receptors in glia. Neuroscientist 13:28–37

    Article  PubMed  CAS  Google Scholar 

  3. Weichel O, Hilgert M, Chatterjee SS, Lehr M, Klein J (1999) Bilobalide, a constituent of Ginkgo biloba, inhibits NMDA-induced phospholipase A2 activation and phospholipid breakdown in rat hippocampus. Naunyn Schmiedebergs Arch Pharmacol 360:609–615

    Article  PubMed  CAS  Google Scholar 

  4. Rao JS, Ertley RN, Rapoport SI, Bazinet RP, Lee HJ (2007) Chronic NMDA administration to rats up-regulates frontal cortex cytosolic phospholipase A(2) and its transcription factor, activator protein-2. J Neurochem 102(6):1918–1927

    Article  PubMed  CAS  Google Scholar 

  5. Fukunaga K, Soderling TR, Miyamoto E (1992) Activation of Ca2+/calmodulin-dependent protein kinase II and protein kinase C by glutamate in cultured rat hippocampal neurons. J Biol Chem 267:22527–22533

    PubMed  CAS  Google Scholar 

  6. Giordano G, Sanchez-Perez AM, Burgal M, Montoliu C, Costa LG, Felipo V (2005) Chronic exposure to ammonia induces isoform-selective alterations in the intracellular distribution and NMDA receptor-mediated translocation of protein kinase C in cerebellar neurons in culture. J Neurochem 92:143–157

    Article  PubMed  CAS  Google Scholar 

  7. Gurd JW, Bissoon N (1997) The N-methyl-D-aspartate receptor subunits NR2A and NR2B bind to the SH2 domains of phospholipase C-gamma. J Neurochem 69:623–630

    Article  PubMed  CAS  Google Scholar 

  8. Colbran RJ (2004) Targeting of calcium/calmodulin-dependent protein kinase II. Biochem J 378:1–16

    Article  PubMed  CAS  Google Scholar 

  9. Fang M, Li J, Tiu SC, Zhang L, Wang M, Yew DT (2005) N-methyl-D-aspartate receptor and apoptosis in Alzheimer’s disease and multiinfarct dementia. J Neurosci Res 81:269–274

    Article  PubMed  CAS  Google Scholar 

  10. Snyder EM, Nong Y, Almeida CG, Paul S, Moran T, Choi EY et al (2005) Regulation of NMDA receptor trafficking by amyloid-beta. Nat Neurosci 8:1051–1058

    Article  PubMed  CAS  Google Scholar 

  11. Hallett PJ, Dunah AW, Ravenscroft P, Zhou S, Bezard E, Crossman AR et al (2005) Alterations of striatal NMDA receptor subunits associated with the development of dyskinesia in the MPTP-lesioned primate model of Parkinson’s disease. Neuropharmacology 48:503–516

    Article  PubMed  CAS  Google Scholar 

  12. Young AB, Greenamyre JT, Hollingsworth Z, Albin R, D’Amato C, Shoulson I et al (1988) NMDA receptor losses in putamen from patients with Huntington’s disease. Science 241:981–983

    Article  PubMed  CAS  Google Scholar 

  13. Mueller HT, Meador-Woodruff JH (2004) NR3A NMDA receptor subunit mRNA expression in schizophrenia, depression and bipolar disorder. Schizophr Res 71:361–370

    Article  PubMed  Google Scholar 

  14. Basselin M, Chang L, Bell JM, Rapoport SI (2006) Chronic lithium chloride administration attenuates brain NMDA receptor-initiated signaling via arachidonic acid in unanesthetized rats. Neuropsychopharmacology 31:1659–1674

    Article  PubMed  CAS  Google Scholar 

  15. Basselin M, Villacreses NE, Chen M, Bell JM, Rapoport SI (2007) Chronic carbamazepine administration reduces N-methyl-D-aspartate receptor-initiated signaling via arachidonic acid in rat brain. Biol Psychiatry 62:934–943

    Article  PubMed  CAS  Google Scholar 

  16. Basselin M, Villacreses NE, Lee HJ, Bell JM, Rapoport SI (2007) Chronic lithium administration attenuates up-regulated brain arachidonic acid metabolism in a rat model of neuroinflammation. J Neurochem 102:761–772

    Article  PubMed  CAS  Google Scholar 

  17. Hashimoto K, Sawa A, Iyo M (2007) Increased levels of glutamate in brains from patients with mood disorders. Biol Psychiatry 62(11):1310–1316

    Article  PubMed  CAS  Google Scholar 

  18. Nudmamud-Thanoi S, Reynolds GP (2004) The NR1 subunit of the glutamate/NMDA receptor in the superior temporal cortex in schizophrenia and affective disorders. Neurosci Lett 372:173–177

    Article  PubMed  CAS  Google Scholar 

  19. Rands GS (2005) Memantine as a neuroprotective treatment in schizophrenia. Br J Psychiatry 186:77–78

    Article  PubMed  CAS  Google Scholar 

  20. Ulas J, Weihmuller FB, Brunner LC, Joyce JN, Marshall JF, Cotman CW (1994) Selective increase of NMDA-sensitive glutamate binding in the striatum of Parkinson’s disease, Alzheimer’s disease, and mixed Parkinson’s disease/Alzheimer’s disease patients: an autoradiographic study. J Neurosci 14:6317–6324

    PubMed  CAS  Google Scholar 

  21. Rosi S, Ramirez-Amaya V, Hauss-Wegrzyniak B, Wenk GL (2004) Chronic brain inflammation leads to a decline in hippocampal NMDA-R1 receptors. J Neuroinflammation 1:12

    Article  PubMed  CAS  Google Scholar 

  22. Zhou HR, Islam Z, Pestka JJ (2003) Kinetics of lipopolysaccharide-induced transcription factor activation/inactivation and relation to proinflammatory gene expression in the murine spleen. Toxicol Appl Pharmacol 187:147–161

    Article  PubMed  CAS  Google Scholar 

  23. Rosenberger TA, Villacreses NE, Hovda JT, Bosetti F, Weerasinghe G, Wine RN et al (2004) Rat brain arachidonic acid metabolism is increased by a 6-day intracerebral ventricular infusion of bacterial lipopolysaccharide. J Neurochem 88:1168–1178

    Article  PubMed  CAS  Google Scholar 

  24. Appleby SB, Ristimaki A, Neilson K, Narko K, Hla T (1994) Structure of the human cyclo-oxygenase-2 gene. Biochem J 302(Pt 3):723–727

    PubMed  CAS  Google Scholar 

  25. Suyama K, Kabuyama Y, Suzuki S, Kawasaki Y, Suzuki J, Suzuki H et al (2001) Induction of transcription factor AP-2 by cytokines and prostaglandins in cultured mesangial cells. Am J Nephrol 21:307–314

    Article  PubMed  CAS  Google Scholar 

  26. Thommesen L, Sjursen W, Gasvik K, Hanssen W, Brekke OL, Skattebol L et al (1998) Selective inhibitors of cytosolic or secretory phospholipase A2 block TNF-induced activation of transcription factor nuclear factor-kappa B and expression of ICAM-1. J Immunol 161:3421–3430

    PubMed  CAS  Google Scholar 

  27. Morri H, Ozaki M, Watanabe Y (1994) 5’-flanking region surrounding a human cytosolic phospholipase A2 gene. Biochem Biophys Res Commun 205:6–11

    Article  PubMed  CAS  Google Scholar 

  28. Rosi S, Vazdarjanova A, Ramirez-Amaya V, Worley PF, Barnes CA, Wenk GL (2006) Memantine protects against LPS-induced neuroinflammation, restores behaviorally-induced gene expression and spatial learning in the rat. Neuroscience 142:1303–1315

    Article  PubMed  CAS  Google Scholar 

  29. Kim YJ, Hwang SY, Oh ES, Oh S, Han IO (2006) IL-1beta, an immediate early protein secreted by activated microglia, induces iNOS/NO in C6 astrocytoma cells through p38 MAPK and NF-kappaB pathways. J Neurosci Res 84:1037–1046

    Article  PubMed  CAS  Google Scholar 

  30. Rao JS, Bazinet RP, Rapoport SI, Lee HJ (2007) Chronic administration of carbamazepine down-regulates AP-2 DNA-binding activity and AP-2alpha protein expression in rat frontal cortex. Biol Psychiatry 61:154–161

    Article  PubMed  CAS  Google Scholar 

  31. Rao JS, Rapoport SI, Bosetti F (2005) Decrease in the AP-2 DNA-binding activity and in the protein expression of AP-2 alpha and AP-2 beta in frontal cortex of rats treated with lithium for 6 weeks. Neuropsychopharmacology 30:2006–2013

    Article  PubMed  CAS  Google Scholar 

  32. Ormandy GC, Song L, Jope RS (1991) Analysis of the convulsant-potentiating effects of lithium in rats. Exp Neurol 111:356–361

    Article  PubMed  CAS  Google Scholar 

  33. Dwivedi Y, Rizavi HS, Rao JS, Pandey GN (2000) Modifications in the phosphoinositide signaling pathway by adrenal glucocorticoids in rat brain: focus on phosphoinositide-specific phospholipase C and inositol 1, 4, 5-trisphosphate. J Pharmacol Exp Ther 295:244–254

    PubMed  CAS  Google Scholar 

  34. Dennis EA (1994) Diversity of group types, regulation, and function of phospholipase A2. J Biol Chem 269:13057–13060

    PubMed  CAS  Google Scholar 

  35. Sheng WS, Hu S, Kravitz FH, Peterson PK, Chao CC (1995) Tumor necrosis factor alpha upregulates human microglial cell production of interleukin-10 in vitro. Clin Diagn Lab Immunol 2:604–608

    PubMed  CAS  Google Scholar 

  36. Schoepp DD, Gamble AY, Salhoff CR, Johnson BG, Ornstein PL (1990) Excitatory amino acid-induced convulsions in neonatal rats mediated by distinct receptor subtypes. Eur J Pharmacol 182:421–427

    Article  PubMed  CAS  Google Scholar 

  37. Olney JW (1969) Brain lesions, obesity, and other disturbances in mice treated with monosodium glutamate. Science 164:719–721

    Article  PubMed  CAS  Google Scholar 

  38. Chung KC, Shin SW, Yoo M, Lee MY, Lee HW, Choe BK et al (2000) A systemic administration of NMDA induces immediate early gene pip92 in the hippocampus. J Neurochem 75:9–17

    Article  PubMed  CAS  Google Scholar 

  39. Brace H, Latimer M, Winn P (1997) Neurotoxicity, blood-brain barrier breakdown, demyelination and remyelination associated with NMDA-induced lesions of the rat lateral hypothalamus. Brain Res Bull 43:447–455

    Article  PubMed  CAS  Google Scholar 

  40. Pearson VL, Rothwell NJ, Toulmond S (1999) Excitotoxic brain damage in the rat induces interleukin-1beta protein in microglia and astrocytes: correlation with the progression of cell death. Glia 25:311–323

    Article  PubMed  CAS  Google Scholar 

  41. Miura M, Tamura T, Mikoshiba K (1990) Cell-specific expression of the mouse glial fibrillary acidic protein gene: identification of the cis- and trans-acting promoter elements for astrocyte-specific expression. J Neurochem 55:1180–1188

    Article  PubMed  CAS  Google Scholar 

  42. Spriggs DR, Deutsch S, Kufe DW (1992) Genomic structure, induction, and production of TNF-alpha. Immunol Ser 56:3–34

    PubMed  CAS  Google Scholar 

  43. Burtrum D, Silverstein FS (1993) Excitotoxic injury stimulates glial fibrillary acidic protein mRNA expression in perinatal rat brain. Exp Neurol 121:127–132

    Article  PubMed  CAS  Google Scholar 

  44. Acarin L, Peluffo H, Gonzalez B, Castellano B (2002) Expression of inducible nitric oxide synthase and cyclooxygenase-2 after excitotoxic damage to the immature rat brain. J Neurosci Res 68:745–754

    Article  PubMed  CAS  Google Scholar 

  45. Won JS, Im YB, Khan M, Singh AK, Singh I (2005) Involvement of phospholipase A2 and lipoxygenase in lipopolysaccharide-induced inducible nitric oxide synthase expression in glial cells. Glia 51:13–21

    Article  PubMed  Google Scholar 

  46. Lee HJ, Rao JS, Chang L, Rapoport SI, Bazinet RP (2008) Chronic N-methyl-D-aspartate administration increases the turnover of arachidonic acid within brain phospholipids of the unanesthetized rat. J Lipid Res 49:162–168

    Article  PubMed  CAS  Google Scholar 

  47. Tilleux S, Hermans E (2007) Neuroinflammation and regulation of glial glutamate uptake in neurological disorders. J Neurosci Res 85:2059–2070

    Article  PubMed  CAS  Google Scholar 

  48. Kim YK, Jung HG, Myint AM, Kim H, Park SH (2007) Imbalance between pro-inflammatory and anti-inflammatory cytokines in bipolar disorder. J Affect Disord 104:91–95

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This work was entirely supported by the Intramural Research Program of the National Institute on Aging, National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jagadeesh S. Rao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, Y.C., Kim, HW., Rapoport, S.I. et al. Chronic NMDA Administration Increases Neuroinflammatory Markers in Rat Frontal Cortex: Cross-Talk Between Excitotoxicity and Neuroinflammation. Neurochem Res 33, 2318–2323 (2008). https://doi.org/10.1007/s11064-008-9731-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-008-9731-8

Keywords

Navigation