Skip to main content
Log in

Chronic Administration of Valproic Acid Reduces Brain NMDA Signaling via Arachidonic Acid in Unanesthetized Rats

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Evidence that brain glutamatergic activity is pathologically elevated in bipolar disorder suggests that mood stabilizers are therapeutic in the disease in part by downregulating glutamatergic activity. Such activity can involve the second messenger, arachidonic acid (AA, 20:4n − 6). We tested this hypothesis with regard to valproic acid (VPA), when stimulating glutamatergic N-methyl-d-aspartate (NMDA) receptors in rat brain and measuring AA and related responses. An acute subconvulsant dose of NMDA (25 mg/kg i.p.) or saline was administered to unanesthetized rats that had been treated i.p. daily with VPA (200 mg/kg) or vehicle for 30 days. Quantitative autoradiography following intravenous [1-14C]AA infusion was used to image regional brain AA incorporation coefficients k*, markers of AA signaling. In chronic vehicle-pretreated rats, NMDA compared with saline significantly increased k* in 41 of 82 examined brain regions, many of which have high NMDA receptor densities, and also increased brain concentrations of the AA metabolites, prostaglandin E2 (PGE2) and thromboxane B2 (TXB2). VPA pretreatment reduced baseline concentrations of PGE2 and TXB2, and blocked the NMDA induced increases in k* and in eicosanoid concentrations. These results, taken with evidence that carbamazepine and lithium also block k* responses to NMDA in rat brain, suggest that mood stabilizers act in bipolar disorder in part by downregulating glutamatergic signaling involving AA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

AA:

Arachidonic acid (20:4n − 6)

PLA2 :

Phospholipase A2

cPLA2 :

Cytosolic PLA2

NMDA:

N-methyl-d-aspartic acid

PGE2 :

Prostaglandin E2

TXB2 :

Thromboxane B2

VPA:

Valproic acid

COX:

Cyclooxygenase

AMPA:

Alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid

References

  1. Ahmad S, Fowler LJ, Whitton PS (2005) Effects of combined lamotrigine and valproate on basal and stimulated extracellular amino acids and monoamines in the hippocampus of freely moving rats. Naunyn Schmiedebergs Arch Pharmacol 371:1–8

    Article  PubMed  CAS  Google Scholar 

  2. Anand A, Charney DS, Oren DA et al (2000) Attenuation of the neuropsychiatric effects of ketamine with lamotrigine: support for hyperglutamatergic effects of N-methyl-d-aspartate receptor antagonists. Arch Gen Psychiatry 57:270–276

    Article  PubMed  CAS  Google Scholar 

  3. Bai G, Kusiak JW (1995) Functional analysis of the proximal 5′-flanking region of the N-methyl-d-aspartate receptor subunit gene, NMDAR1. J Biol Chem 270:7737–7744

    PubMed  CAS  Google Scholar 

  4. Basselin M, Chang L, Bell JM et al (2005) Chronic lithium chloride administration to unanesthetized rats attenuates brain dopamine D2-like receptor-initiated signaling via arachidonic acid. Neuropsychopharmacology 30:1064–1075

    Article  PubMed  CAS  Google Scholar 

  5. Basselin M, Chang L, Bell JM et al (2006) Chronic lithium chloride administration attenuates brain NMDA receptor-initiated signaling via arachidonic acid in unanesthetized rats. Neuropsychopharmacology 31:1659–1674

    Article  PubMed  CAS  Google Scholar 

  6. Basselin M, Chang L, Chen M et al (2008) Chronic carbamazepine administration attenuates dopamine D2-like receptor-initiated signaling via arachidonic acid in rat brain. Neurochem Res. doi:10.1007/s11064-008-9595-y

  7. Basselin M, Chang L, Seemann R et al (2003) Chronic lithium administration potentiates brain arachidonic acid signaling at rest and during cholinergic activation in awake rats. J Neurochem 85:1553–1562

    Article  PubMed  CAS  Google Scholar 

  8. Basselin M, Chang L, Seemann R et al (2005) Chronic lithium administration to rats selectively modifies 5-HT2A/2C receptor-mediated brain signaling via arachidonic acid. Neuropsychopharmacology 30:461–472

    Article  PubMed  CAS  Google Scholar 

  9. Basselin M, Villacreses NE, Chen M et al (2007) Chronic carbamazepine administration reduces N-methyl-D-aspartate receptor-initiated signaling via arachidonic acid in rat brain. Biol Psychiatry 62:934–943

    Article  PubMed  CAS  Google Scholar 

  10. Basselin M, Villacreses NE, Langenbach R et al (2006) Resting and arecoline-stimulated brain metabolism and signaling involving arachidonic acid are altered in the cyclooxygenase-2 knockout mouse. J Neurochem 96:669–679

    Article  PubMed  CAS  Google Scholar 

  11. Basselin M, Villacreses NE, Lee HJ et al (2007) Flurbiprofen, a cyclooxygenase inhibitor, reduces the brain arachidonic acid signal in response to the cholinergic muscarinic agonist, arecoline, in awake rats. Neurochem Res 32:1857–1867

    Article  PubMed  CAS  Google Scholar 

  12. Bazinet RP, Weis MT, Rapoport SI et al (2006) Valproic acid selectively inhibits conversion of arachidonic acid to arachidonoyl-CoA by brain microsomal long-chain fatty acyl-CoA synthetases: relevance to bipolar disorder. Psychopharmacology (Berl) 184:122–129

    Article  CAS  Google Scholar 

  13. Bosetti F, Bell JM, Manickam P (2005) Microarray analysis of rat brain gene expression after chronic administration of sodium valproate. Brain Res Bull 65:331–338

    Article  PubMed  CAS  Google Scholar 

  14. Bosetti F, Weerasinghe GR, Rosenberger TA et al (2003) Valproic acid down-regulates the conversion of arachidonic acid to eicosanoids via cyclooxygenase-1 and -2 in rat brain. J Neurochem 85:690–696

    Article  PubMed  CAS  Google Scholar 

  15. Bosisio E, Galli C, Galli G et al (1976) Correlation between release of free arachidonic acid and prostaglandin formation in brain cortex and cerebellum. Prostaglandins 11:773–781

    Article  PubMed  CAS  Google Scholar 

  16. Bowden CL (2003) Valproate. Bipolar Disord 5:189–202

    Article  PubMed  CAS  Google Scholar 

  17. Bowden CL, Karren NU (2006) Anticonvulsants in bipolar disorder. Aust N Z J Psychiatry 40:386–393

    Article  PubMed  Google Scholar 

  18. Bown CD, Wang JF, Young LT (2003) Attenuation of N-methyl-d-aspartate-mediated cytoplasmic vacuolization in primary rat hippocampal neurons by mood stabilizers. Neuroscience 117:949–955

    Article  PubMed  CAS  Google Scholar 

  19. Bymaster FP, Felder CC (2002) Role of the cholinergic muscarinic system in bipolar disorder and related mechanism of action of antipsychotic agents. Mol Psychiatry 7(suppl 1):S57–S63

    Article  PubMed  CAS  Google Scholar 

  20. Caldeira MV, Melo CV, Pereira DB et al (2007) BDNF regulates the expression and traffic of NMDA receptors in cultured hippocampal neurons. Mol Cell Neurosci 35:208–219

    Article  PubMed  CAS  Google Scholar 

  21. Carli M, Afkhami-Dastjerdian S, Reader TA (1997) Effects of a chronic lithium treatment on cortical serotonin uptake sites and 5-HT1A receptors. Neurochem Res 22:427–435

    Article  PubMed  CAS  Google Scholar 

  22. Chang MC, Contreras MA, Rosenberger TA et al (2001) Chronic valproate treatment decreases the in vivo turnover of arachidonic acid in brain phospholipids: a possible common effect of mood stabilizers. J Neurochem 77:796–803

    Article  PubMed  CAS  Google Scholar 

  23. Chen G, Zeng WZ, Yuan PX et al (1999) The mood-stabilizing agents lithium and valproate robustly increase the levels of the neuroprotective protein bcl-2 in the CNS. J Neurochem 72:879–882

    Article  PubMed  CAS  Google Scholar 

  24. Cipriani A, Rendell JM, Geddes JR (2006) Haloperidol alone or in combination for acute mania. Cochrane Database Syst Rev 3:CD004362

    PubMed  CAS  Google Scholar 

  25. Cooper JR, Bloom FE, Roth RH (2003) The biochemical basis of neuropharmacology, 8th edn. Oxford University Press, Oxford

    Google Scholar 

  26. DeGeorge JJ, Noronha JG, Bell JM et al (1989) Intravenous injection of [1-14C]arachidonate to examine regional brain lipid metabolism in unanesthetized rats. J Neurosci Res 24:413–423

    Article  PubMed  CAS  Google Scholar 

  27. Delaney SM, Geiger JD (1995) Enhancement of NMDA-induced increases in levels of endogenous adenosine by adenosine deaminase and adenosine transport inhibition in rat striatum. Brain Res 702:72–76

    Article  PubMed  CAS  Google Scholar 

  28. DeMar JC Jr, Lee HJ, Ma K et al (2006) Brain elongation of linoleic acid is a negligible source of the arachidonate in brain phospholipids of adult rats. Biochim Biophys Acta 1761:1050–1059

    PubMed  CAS  Google Scholar 

  29. Detich N, Bovenzi V, Szyf M (2003) Valproate induces replication-independent active DNA demethylation. J Biol Chem 278:27586–27592

    Article  PubMed  CAS  Google Scholar 

  30. Deutsch J, Rapoport SI, Purdon AD (1997) Relation between free fatty acid and acyl-CoA concentrations in rat brain following decapitation. Neurochem Res 22:759–765

    Article  PubMed  CAS  Google Scholar 

  31. Dong E, Guidotti A, Grayson DR et al (2007) Histone hyperacetylation induces demethylation of reelin and 67-kDa glutamic acid decarboxylase promoters. Proc Natl Acad Sci USA 104:4676–4681

    Article  PubMed  CAS  Google Scholar 

  32. Du J, Gray NA, Falke CA et al (2004) Modulation of synaptic plasticity by antimanic agents: the role of AMPA glutamate receptor subunit 1 synaptic expression. J Neurosci 24:6578–6589

    Article  PubMed  CAS  Google Scholar 

  33. Dumuis A, Sebben M, Haynes L et al (1988) NMDA receptors activate the arachidonic acid cascade system in striatal neurons. Nature 336:68–70

    Article  PubMed  CAS  Google Scholar 

  34. Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226:497–509

    PubMed  CAS  Google Scholar 

  35. Fountoulakis KN, Vieta E, Siamouli M et al (2007) Treatment of bipolar disorder: a complex treatment for a multi-faceted disorder. Ann Gen Psychiatry 6:27

    Article  PubMed  Google Scholar 

  36. Frey BN, Andreazza AC, Cereser KM et al (2006) Effects of mood stabilizers on hippocampus BDNF levels in an animal model of mania. Life Sci 79:281–286

    Article  PubMed  CAS  Google Scholar 

  37. Gean PW, Huang CC, Hung CR et al (1994) Valproic acid suppresses the synaptic response mediated by the NMDA receptors in rat amygdalar slices. Brain Res Bull 33:333–336

    Article  PubMed  CAS  Google Scholar 

  38. Gobbi G, Janiri L (2006) Sodium- and magnesium-valproate in vivo modulate glutamatergic and GABAergic synapses in the medial prefrontal cortex. Psychopharmacology (Berl) 185:255–262

    Article  CAS  Google Scholar 

  39. Goodnick PJ (2006) Anticonvulsants in the treatment of bipolar mania. Expert Opin Pharmacother 7:401–410

    Article  PubMed  CAS  Google Scholar 

  40. Groc L, Choquet D, Stephenson FA et al (2007) NMDA receptor surface trafficking and synaptic subunit composition are developmentally regulated by the extracellular matrix protein Reelin. J Neurosci 27:10165–10175

    Article  PubMed  CAS  Google Scholar 

  41. Hashimoto K, Sawa A, Iyo M (2007) Increased levels of glutamate in brains from patients with mood disorders. Biol Psychiatry 62:1310–1316

    Article  PubMed  CAS  Google Scholar 

  42. Hassel B, Iversen EG, Gjerstad L et al (2001) Up-regulation of hippocampal glutamate transport during chronic treatment with sodium valproate. J Neurochem 77:1285–1292

    Article  PubMed  CAS  Google Scholar 

  43. Johannessen CU (2000) Mechanisms of action of valproate: a commentatory. Neurochem Int 37:103–110

    Article  PubMed  CAS  Google Scholar 

  44. Kábová R, Liptáková S, Slamberová R et al (1999) Age-specific N-methyl-d-aspartate-induced seizures: perspectives for the West syndrome model. Epilepsia 40:1357–1369

    Article  PubMed  Google Scholar 

  45. Kanai H, Sawa A, Chen RW et al (2004) Valproic acid inhibits histone deacetylase activity and suppresses excitotoxicity-induced GAPDH nuclear accumulation and apoptotic death in neurons. Pharmacogenomics J 4:336–344

    Article  PubMed  CAS  Google Scholar 

  46. Kim DK, Rordorf G, Nemenoff RA et al (1995) Glutamate stably enhances the activity of two cytosolic forms of phospholipase A2 in brain cortical cultures. Biochem J 310(Pt 1):83–90

    PubMed  CAS  Google Scholar 

  47. Ko GY, Brown-Croyts LM, Teyler TJ (1997) The effects of anticonvulsant drugs on NMDA-EPSP, AMPA-EPSP, and GABA-IPSP in the rat hippocampus. Brain Res Bull 42:297–302

    Article  PubMed  CAS  Google Scholar 

  48. Kunig G, Niedermeyer B, Deckert J et al (1998) Inhibition of [3H]alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid [AMPA] binding by the anticonvulsant valproate in clinically relevant concentrations: an autoradiographic investigation in human hippocampus. Epilepsy Res 31:153–157

    Article  PubMed  CAS  Google Scholar 

  49. Lambert RC, Bessaih T, Leresche N (2006) Modulation of neuronal T-type calcium channels. CNS Neurol Disord Drug Targets 5:611–627

    Article  PubMed  CAS  Google Scholar 

  50. Lan MJ, McLoughlin GA, Griffin JL et al (2008) Metabonomic analysis identifies molecular changes associated with the pathophysiology and drug treatment of bipolar disorder. Mol Psychiatry. doi:10.1038/sj.mp.4002130

  51. Lazarewicz JW, Saliñska E, Stafiej A et al (2000) NMDA receptors and nitric oxide regulate prostaglandin D2 synthesis in the rabbit hippocampus in vivo. Acta Neurobiol Exp (Wars) 60:427–435

    CAS  Google Scholar 

  52. Lazarewicz JW, Wroblewski JT, Palmer ME et al (1988) Activation of N-methyl-d-aspartate-sensitive glutamate receptors stimulates arachidonic acid release in primary cultures of cerebellar granule cells. Neuropharmacology 27:765–769

    Article  PubMed  CAS  Google Scholar 

  53. Leonard AS, Hell JW (1997) Cyclic AMP-dependent protein kinase and protein kinase C phosphorylate N-methyl-d-aspartate receptors at different sites. J Biol Chem 272:12107–12115

    Article  PubMed  CAS  Google Scholar 

  54. Lerea LS, Carlson NG, Simonato M et al (1997) Prostaglandin F is required for NMDA receptor-mediated induction of c-fos mRNA in dentate gyrus neurons. J Neurosci 17:117–124

    PubMed  CAS  Google Scholar 

  55. Li R, Wing LL, Wyatt RJ et al (1993) Effects of haloperidol, lithium, and valproate on phosphoinositide turnover in rat brain. Pharmacol Biochem Behav 46:323–329

    Article  PubMed  CAS  Google Scholar 

  56. Mahmood T, Silverstone T (2001) Serotonin and bipolar disorder. J Affect Disord 66:1–11

    Article  PubMed  CAS  Google Scholar 

  57. Martin ED, Pozo MA (2004) Valproate reduced excitatory postsynaptic currents in hippocampal CA1 pyramidal neurons. Neuropharmacology 46:555–561

    Article  PubMed  CAS  Google Scholar 

  58. Mater MK, Thelen AP, Jump DB (1999) Arachidonic acid and PGE2 regulation of hepatic lipogenic gene expression. J Lipid Res 40:1045–1052

    PubMed  CAS  Google Scholar 

  59. McCullumsmith RE, Kristiansen LV, Beneyto M et al (2007) Decreased NR1, NR2A, and SAP102 transcript expression in the hippocampus in bipolar disorder. Brain Res 1127:108–118

    Article  PubMed  CAS  Google Scholar 

  60. Murphy DL, Brodie HK, Goodwin FK et al (1971) Regular induction of hypomania by l-dopa in “bipolar” manic-depressive patients. Nature 229:135–136

    Article  PubMed  CAS  Google Scholar 

  61. Muzina DJ, Elhaj O, Gajwani P et al (2005) Lamotrigine and antiepileptic drugs as mood stabilizers in bipolar disorder. Acta Psychiatr Neurol Scand Suppl:21–28

  62. Nasrallah HA, Ketter TA, Kalali AH (2006) Carbamazepine and valproate for the treatment of bipolar disorder: a review of the literature. J Affect Disord 95:69–78

    Article  PubMed  CAS  Google Scholar 

  63. O′Donnell T, Rotzinger S, Ulrich M et al (2003) Effects of chronic lithium and sodium valproate on concentrations of brain amino acids. Eur Neuropsychopharmacol 13:220–227

    Article  PubMed  CAS  Google Scholar 

  64. Okada S, Murakami Y, Nishihara M et al (2000) Perfusion of the hypothalamic paraventricular nucleus with N-methyl-d-aspartate produces thromboxane A2 and centrally activates adrenomedullary outflow in rats. Neuroscience 96:585–590

    Article  PubMed  CAS  Google Scholar 

  65. Ormandy GC, Song L, Jope RS (1991) Analysis of the convulsant-potentiating effects of lithium in rats. Exp Neurol 111:356–361

    Article  PubMed  CAS  Google Scholar 

  66. Pal R, Eaton MJ, Islam S et al (1999) Immunocytochemical and in situ hybridization studies of the expression and distribution of three subunits of a complex with N-methyl-d-aspartate receptor-like properties. Neuroscience 94:1291–1311

    Article  PubMed  CAS  Google Scholar 

  67. Paxinos G, Watson C (1987) The rat brain in stereotaxic coordinates, Third edn. Academic Press, New York

    Google Scholar 

  68. Peet M, Peters S (1995) Drug-induced mania. Drug Saf 12:146–153

    Article  PubMed  CAS  Google Scholar 

  69. Pepicelli O, Fedele E, Bonanno G et al (2002) In vivo activation of N-methyl-d-aspartate receptors in the rat hippocampus increases prostaglandin E2 extracellular levels and triggers lipid peroxidation through cyclooxygenase-mediated mechanisms. J Neurochem 81:1028–1034

    Article  PubMed  CAS  Google Scholar 

  70. Phiel CJ, Zhang F, Huang EY et al (2001) Histone deacetylase is a direct target of valproic acid, a potent anticonvulsant, mood stabilizer, and teratogen. J Biol Chem 276:36734–36741

    Article  PubMed  CAS  Google Scholar 

  71. Post RM, Jimerson DC, Bunney WE Jr et al (1980) Dopamine and mania: behavioral and biochemical effects of the dopamine receptor blocker pimozide. Psychopharmacology (Berl) 67:297–305

    Article  CAS  Google Scholar 

  72. Qiang M, Ticku MK (2005) Role of AP-1 in ethanol-induced N-methyl-d-aspartate receptor 2B subunit gene up-regulation in mouse cortical neurons. J Neurochem 95:1332–1341

    Article  PubMed  CAS  Google Scholar 

  73. Rao JS, Bazinet RP, Rapoport SI et al (2007) Chronic treatment of rats with sodium valproate downregulates frontal cortex NF-κB DNA binding activity and COX-2 mRNA. Bipolar Disord 9:513–520

    Article  PubMed  CAS  Google Scholar 

  74. Rapoport SI (2001) In vivo fatty acid incorporation into brain phospholipids in relation to plasma availability, signal transduction and membrane remodeling. J Mol Neurosci 16:243–261

    Article  PubMed  CAS  Google Scholar 

  75. Rapoport SI, Chang MCJ, Spector AA (2001) Delivery and turnover of plasma-derived essential PUFAs in mammalian brain. J Lipid Res 42:678–685

    PubMed  CAS  Google Scholar 

  76. Robinson PJ, Noronha J, DeGeorge JJ et al (1992) A quantitative method for measuring regional in vivo fatty-acid incorporation into and turnover within brain phospholipids: review and critical analysis. Brain Res Brain Res Rev 17:187–214

    Article  PubMed  CAS  Google Scholar 

  77. Rowe MK, Chuang DM (2004) Lithium neuroprotection: molecular mechanisms and clinical implications. Expert Rev Mol Med 6:1–18

    Article  PubMed  Google Scholar 

  78. Shao L, Young LT, Wang JF (2005) Chronic treatment with mood stabilizers lithium and valproate prevents excitotoxicity by inhibiting oxidative stress in rat cerebral cortical cells. Biol Psychiatry 58:879–884

    Article  PubMed  CAS  Google Scholar 

  79. Shen Y, Kishimoto K, Linden DJ et al (2007) Cytosolic phospholipase A2 alpha mediates electrophysiologic responses of hippocampal pyramidal neurons to neurotoxic NMDA treatment. Proc Natl Acad Sci USA 104:6078–6083

    Article  PubMed  CAS  Google Scholar 

  80. Sonnenberg JL, Mitchelmore C, Macgregor-Leon PF et al (1989) Glutamate receptor agonists increase the expression of Fos, Fra, and AP-1 DNA binding activity in the mammalian brain. J Neurosci Res 24:72–80

    Article  PubMed  CAS  Google Scholar 

  81. Stefanovic B, Bosetti F, Silva AC (2006) Modulatory role of cyclooxygenase-2 in cerebrovascular coupling. Neuroimage 32:23–32

    Article  PubMed  Google Scholar 

  82. Steppuhn KG, Turski L (1993) Modulation of the seizure threshold for excitatory amino acids in mice by antiepileptic drugs and chemoconvulsants. J Pharmacol Exp Ther 265:1063–1070

    PubMed  CAS  Google Scholar 

  83. Stout SC, Owens MJ, Lindsey KP et al (2001) Effects of sodium valproate on corticotropin-releasing factor systems in rat brain. Neuropsychopharmacology 24:624–631

    Article  PubMed  CAS  Google Scholar 

  84. Szupera Z, Mezei Z, Kis B et al (2000) The effects of valproate on the arachidonic acid metabolism of rat brain microvessels and of platelets. Eur J Pharmacol 387:205–210

    Article  PubMed  CAS  Google Scholar 

  85. Tabachnick BG, Fidell LS (2001) Computer-assisted research design and analysis. Allyn and Bacon Ed, Boston

    Google Scholar 

  86. Tanaka J, Miyakubo H, Kawakami A et al (2006) Involvement of NMDA receptor mechanisms in the modulation of serotonin release in the lateral parabrachial nucleus in the rat. Brain Res Bull 71:311–315

    Article  PubMed  CAS  Google Scholar 

  87. Tapia-Arancibia L, Rage F, Recasens M et al (1992) NMDA receptor activation stimulates phospholipase A2 and somatostatin release from rat cortical neurons in primary cultures. Eur J Pharmacol 225:253–262

    Article  PubMed  CAS  Google Scholar 

  88. Teng CT, Demetrio FN (2006) Memantine may acutely improve cognition and have a mood stabilizing effect in treatment-resistant bipolar disorder. Rev Bras Psiquiatr 28:252–254

    Article  PubMed  Google Scholar 

  89. Thurston JH, Hauhart RE (1989) Valproate doubles the anoxic survival time of normal developing mice: possible relevance to valproate-induced decreases in cerebral levels of glutamate and aspartate, and increases in taurine. Life Sci 45:59–62

    Article  PubMed  CAS  Google Scholar 

  90. Toro C, Deakin JF (2005) NMDA receptor subunit NRI and postsynaptic protein PSD-95 in hippocampus and orbitofrontal cortex in schizophrenia and mood disorder. Schizophr Res 80:323–330

    Article  PubMed  Google Scholar 

  91. Turski L, Niemann W, Stephens DN (1990) Differential effects of antiepileptic drugs and beta-carbolines on seizures induced by excitatory amino acids. Neuroscience 39:799–807

    Article  PubMed  CAS  Google Scholar 

  92. Ueda Y, Willmore LJ (2000) Molecular regulation of glutamate and GABA transporter proteins by valproic acid in rat hippocampus during epileptogenesis. Exp Brain Res 133:334–339

    Article  PubMed  CAS  Google Scholar 

  93. Weichel O, Hilgert M, Chatterjee SS et al (1999) Bilobalide, a constituent of Ginkgo biloba, inhibits NMDA-induced phospholipase A2 activation and phospholipid breakdown in rat hippocampus. Naunyn Schmiedebergs Arch Pharmacol 360:609–615

    Article  PubMed  CAS  Google Scholar 

  94. Wu Y, Wang L (2002) The effects of antiepileptic drugs on spatial learning and hippocampal protein kinase Cγ in immature rats. Brain Dev 24:82–87

    Article  PubMed  Google Scholar 

  95. Young AM, Bradford HF (1993) N-methyl-d-aspartate releases gamma-aminobutyric acid from rat striatum in vivo: a microdialysis study using a novel preloading method. J Neurochem 60:487–492

    Article  PubMed  CAS  Google Scholar 

  96. Zeise ML, Kasparow S, Zieglgansberger W (1991) Valproate suppresses N-methyl-d-aspartate-evoked, transient depolarizations in the rat neocortex in vitro. Brain Res 544:345–348

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Intramural Research Program of the National Institute on Aging. None of the authors has a financial or other conflict of interest related to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mireille Basselin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Basselin, M., Chang, L., Chen, M. et al. Chronic Administration of Valproic Acid Reduces Brain NMDA Signaling via Arachidonic Acid in Unanesthetized Rats. Neurochem Res 33, 2229–2240 (2008). https://doi.org/10.1007/s11064-008-9700-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-008-9700-2

Keywords

Navigation