Skip to main content
Log in

Differential Contribution of L-, N-, and P/Q-type Calcium Channels to [Ca2+]i Changes Evoked by Kainate in Hippocampal Neurons

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

We investigated the contribution of L-, N- and P/Q-type Ca2+ channels to the [Ca2+]i changes, evoked by kainate, in the cell bodies of hippocampal neurons, using a pharmacological approach and Ca2+ imaging. Selective Ca2+ channel blockers, namely nitrendipine, ω-Conotoxin GVIA (ω-GVIA) and ω-Agatoxin IVA (ω-AgaIVA) were used. The [Ca2+]i changes evoked by kainate presented a high variability, and were abolished by NBQX, a AMPA/kainate receptor antagonist, but the N-methyl-d-aspartate (NMDA) receptor antagonist, D-AP5, was without effect. Each Ca2+ channel blocker caused differential inhibitory effects on [Ca2+]i responses evoked by kainate. We grouped the neurons for each blocker in three subpopulations: (1) neurons with responses below 60% of the control; (2) neurons with responses between 60% and 90% of the control, and (3) neurons with responses above 90% of the control. The inhibition caused by nitrendipine was higher than the inhibition caused by ω-GVIA or ω-AgaIVA. Thus, in the presence of nitrendipine, the percentage of cells with responses below 60% of the control was 41%, whereas in the case of ω-GVIA or ω-AgaIVA the values were 9 or 17%, respectively. The results indicate that hippocampal neurons differ in what concerns their L-, N- and P/Q- type Ca2+ channels activated by stimulation of the AMPA/kainate receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Barnes GN, Slevin JT (2003) Ionotropic glutamate receptor biology: effect on synaptic connectivity and function in neurological disease. Curr Med Chem 10:2059–2072

    Article  PubMed  CAS  Google Scholar 

  2. Elliott EM, Malouf AT, Catterall WA (1995) Role of calcium channel subtypes in calcium transients in hippocampal CA3 neurons. J Neurosci 15:6433–6444

    PubMed  CAS  Google Scholar 

  3. Timmermann DB, Westenbroek RE, Schousboe A, Catterall WA (2002) Distribution of high-voltage-activated calcium channels in cultured gamma-aminobutyric acidergic neurons from mouse cerebral cortex. J Neurosci Res 67:48–61

    Article  PubMed  CAS  Google Scholar 

  4. Westenbroek RE, Ahlijanian MK, Catterall WA (1990) Clustering of L-type Ca2+ channels at the base of major dendrites in hippocampal pyramidal neurons. Nature 347:281–284

    Article  PubMed  CAS  Google Scholar 

  5. Reynolds IJ, Wagner JA, Snyder SH, Thayer SA, Olivera BM, Miller RJ (1986) Brain voltage-sensitive calcium channel subtypes differentiated by omega-conotoxin fraction GVIA. Proc Natl Acad Sci USA 83:8804–8807

    Article  PubMed  CAS  Google Scholar 

  6. Westenbroek RE, Hell JW, Warner C, Dubel SJ, Snutch TP, Catterall WA (1992) Biochemical properties and subcellular distribution of an N-type calcium channel alpha 1 subunit. Neuron 9:1099–1115

    Article  PubMed  CAS  Google Scholar 

  7. Westenbroek RE, Sakurai T, Elliott EM et al (1995) Immunochemical identification and subcellular distribution of the alpha 1A subunits of brain calcium channels. J Neurosci 15:6403–6418

    PubMed  CAS  Google Scholar 

  8. Nakanishi S, Fujii A, Kimura T, Sakakibara S, Mikoshiba K (1995) Spatial distribution of omega-agatoxin IVA binding sites in mouse brain slices. J Neurosci Res 41:532–539

    Article  PubMed  CAS  Google Scholar 

  9. Qian J, Noebels JL (2001) Presynaptic Ca2+ channels and neurotransmitter release at the terminal of a mouse cortical neuron. J Neurosci 21:3721–3728

    PubMed  CAS  Google Scholar 

  10. Takahashi T, Momiyama A (1993) Different types of calcium channels mediate central synaptic transmission. Nature 366:156–158

    Article  PubMed  CAS  Google Scholar 

  11. Sather WA, Tanabe T, Zhang JF, Mori Y, Adams ME, Tsien RW (1993) Distinctive biophysical and pharmacological properties of class A (BI) calcium channel alpha 1 subunits. Neuron 11:291–303

    Article  PubMed  CAS  Google Scholar 

  12. Stea A, Tomlinson WJ, Soong TW et al (1994) Localization and functional properties of a rat brain alpha 1A calcium channel reflect similarities to neuronal Q- and P-type channels. Proc Natl Acad Sci USA 91:10576–10580

    Article  PubMed  CAS  Google Scholar 

  13. Ambrosio AF, Silva AP, Malva JO, Soares-da-Silva P, Carvalho AP, Carvalho CM (1999) Carbamazepine inhibits L-type Ca2+ channels in cultured rat hippocampal neurons stimulated with glutamate receptor agonists. Neuropharmacology 38:1349–1359

    Article  PubMed  CAS  Google Scholar 

  14. Ambrosio AF, Silva AP, Malva JO, Mesquita JF, Carvalho AP, Carvalho CM (2000) Role of desensitization of AMPA receptors on the neuronal viability and on the [Ca2+]i changes in cultured rat hippocampal neurons. Eur J Neurosci 12:2021–2031

    Article  PubMed  CAS  Google Scholar 

  15. Brewer GJ, Torricelli JR, Evege EK, Price PJ (1993) Optimized survival of hippocampal neurons in B27-supplemented Neurobasal, a new serum-free medium combination. J Neurosci Res 35:567–576

    Article  PubMed  CAS  Google Scholar 

  16. Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260:3440–3450

    PubMed  CAS  Google Scholar 

  17. Araujo IM, Carreira BP, Pereira T et al (2007) Changes in calcium dynamics following the reversal of the sodium-calcium exchanger have a key role in AMPA receptor-mediated neurodegeneration via calpain activation in hippocampal neurons. Cell Death Differ 14:1635–1646

    Article  PubMed  CAS  Google Scholar 

  18. Pravettoni E, Bacci A, Coco S, Forbicini P, Matteoli M, Verderio C (2000) Different localizations and functions of L-type and N-type calcium channels during development of hippocampal neurons. Dev Biol 227:581–594

    Article  PubMed  CAS  Google Scholar 

  19. Alberdi E, Sanchez-Gomez MV, Marino A, Matute C (2002) Ca(2+) influx through AMPA or kainate receptors alone is sufficient to initiate excitotoxicity in cultured oligodendrocytes. Neurobiol Dis 9:234–243

    Article  PubMed  CAS  Google Scholar 

  20. Courtney MJ, Lambert JJ, Nicholls DG (1990) The interactions between plasma membrane depolarization and glutamate receptor activation in the regulation of cytoplasmic free calcium in cultured cerebellar granule cells. J Neurosci 10:3873–3879

    PubMed  CAS  Google Scholar 

  21. Leski ML, Valentine SL, Coyle JT (1999) L-type voltage-gated calcium channels modulate kainic acid neurotoxicity in cerebellar granule cells. Brain Res 828:27–40

    Article  PubMed  CAS  Google Scholar 

  22. Scholz KP, Miller RJ (1995) Developmental changes in presynaptic calcium channels coupled to glutamate release in cultured rat hippocampal neurons. J Neurosci 15:4612–4617

    PubMed  CAS  Google Scholar 

  23. Wheeler DB, Randall A, Tsien RW (1994) Roles of N-type and Q-type Ca2+ channels in supporting hippocampal synaptic transmission. Science 264:107–111

    Article  PubMed  CAS  Google Scholar 

  24. Burke SP, Adams ME, Taylor CP (1993) Inhibition of endogenous glutamate release from hippocampal tissue by Ca2+ channel toxins. Eur J Pharmacol 238:383–386

    Article  PubMed  CAS  Google Scholar 

  25. Keith RA, Mangano TJ, Salama AI (1989) Inhibition of N-methyl-D-aspartate- and kainic acid-induced neurotransmitter release by omega-conotoxin GVIA. Br J Pharmacol 98:767–772

    PubMed  CAS  Google Scholar 

  26. Kimura M, Yamanishi Y, Hanada T et al (1995) Involvement of P-type calcium channels in high potassium-elicited release of neurotransmitters from rat brain slices. Neuroscience 66:609–615

    Article  PubMed  CAS  Google Scholar 

  27. Saydoff JA, Zaczek R (1996) Blockade of N- and Q-type Ca2+ channels inhibit K(+)-evoked [3H]acetylcholine release in rat hippocampal slices. Brain Res Bull 40:283–286

    Article  PubMed  CAS  Google Scholar 

  28. Luebke JI, Dunlap K, Turner TJ (1993) Multiple calcium channel types control glutamatergic synaptic transmission in the hippocampus. Neuron 11:895–902

    Article  PubMed  CAS  Google Scholar 

  29. Ambrosio AF, Malva JO, Carvalho AP, Carvalho CM (1997) Inhibition of N-,P/Q- and other types of Ca2+ channels in rat hippocampal nerve terminals by the adenosine A1 receptor. Eur J Pharmacol 340:301–310

    Article  PubMed  CAS  Google Scholar 

  30. Mills LR, Niesen CE, So AP, Carlen PL, Spigelman I, Jones OT (1994) N-type Ca2+ channels are located on somata, dendrites, and a subpopulation of dendritic spines on live hippocampal pyramidal neurons. J Neurosci 14:6815–6824

    PubMed  CAS  Google Scholar 

  31. Wang G, Ding S, Yunokuchi K (2000) Different distribution of nifedipine- and omega-conotoxin GVIA-sensitive Ca2+ channels in rat hippocampal neurons. Neuroreport 11:2419–2423

    Article  PubMed  CAS  Google Scholar 

  32. Wang G, Hashiguchi T, Sakamoto Y, Takigawa M, Kameyama M (1999) Distribution of nifedipine- and omega-conotoxin GVIA-sensitive Ca2+ channels in cultured rat neocortical neurons. Neuroscience 93:491–496

    Article  PubMed  CAS  Google Scholar 

  33. Igelmund P, Zhao YQ, Heinemann U (1996) Effects of T-type, L-type, N-type, P-type, and Q-type calcium channel blockers on stimulus-induced pre- and postsynaptic calcium fluxes in rat hippocampal slices. Exp Brain Res 109:22–32

    Article  PubMed  CAS  Google Scholar 

  34. Rusznak Z, Harasztosi C, Stanfield PR, Kovacs L, Szucs G (2000) Potassium-depolarization-induced cytoplasmic [Ca2+] transient in freshly dissociated pyramidal neurones of the rat dorsal cochlear nucleus. Pflugers Arch 440:462–466

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by Fundação para a Ciência e a Tecnologia (FCT), Portugal (Grant POCTI/NSE/35875/2000).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arsélio P. Carvalho.

Additional information

Special issue article in honor of Dr. Ricardo Tapia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Santiago, A.R., Carvalho, C.M., Carvalho, A.P. et al. Differential Contribution of L-, N-, and P/Q-type Calcium Channels to [Ca2+]i Changes Evoked by Kainate in Hippocampal Neurons. Neurochem Res 33, 1501–1508 (2008). https://doi.org/10.1007/s11064-008-9618-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-008-9618-8

Keywords

Navigation