Skip to main content

Advertisement

Log in

Influence of Integrin-blocking Peptide on Gadolinium- and Hypertonic Shrinking-induced Neurotransmitter Release in Rat Brain Synaptosomes

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Polyvalent cations and hypertonic shrinking of presynaptic endings lead to calcium-independent exocytosis in various synapses. In the present study we have investigated the contribution of integrins to this phenomenon. It was found that hypertonic shrinking, polyvalent cations ruthenium red and gadolinium results in dose-dependent calcium-independent neurotransmitter release in rat brain synaptosomes. The exocytotic mechanism of neurotransmitter release induced by 300 μM gadolinium was additionally verified by the fluorescent dye FM2-10. We found that 200 μM of RGDS peptide, an inhibitor of integrins, decreased polyvalent gadolinium-induced [3H]d-aspartate release by 26%. This compound had no effect upon hypertonicity-induced release. The peptide RGES, a negative control for RGDS; genistein, an inhibitor of tyrosine kinases; and citrate, an inhibitor of lanthanides-induced aggregation were ineffective in both cases. Therefore, we have shown that integrins did not influence hypertonicity-evoked [3H]d-aspartate release, but partially mediated that evoked by gadolinium ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chapman ER (2002) Synaptotagmin: a Ca(2+) sensor that triggers exocytosis? Nat Rev Mol Cell Biol 3:498–508

    Article  PubMed  CAS  Google Scholar 

  2. Hu K, Carroll J, Fedorovich S, et al (2002) Vesicular restriction of synaptobrevin suggests a role for calcium in membrane fusion. Nature 415:646–650

    Article  PubMed  CAS  Google Scholar 

  3. Burgoyne RD, Morgan A (2003) Secretory granule exocytosis. Physiol Rev 83:581–632

    PubMed  CAS  Google Scholar 

  4. Sudhof TC (2004) The synaptic vesicle cycle. Annu Rev Neurosci 27:509–547

    Article  PubMed  CAS  Google Scholar 

  5. Fatt P, Katz B (1952) Spontaneous subthreshold activity at motor endings. J Physiol 117:109–128

    PubMed  CAS  Google Scholar 

  6. Capogna M, Gahwiler BH, Thompson SM (1996) Presynaptic inhibition of calcium-dependent and -independent release elicited with ionomycin, gadolinium, and alpha-latrotoxin in the hippocampus. J Neurophysiol 75:2017–2028

    PubMed  CAS  Google Scholar 

  7. Rosenmund C, Stevens CF (1996) Definition of readily releasable pool of vesicles at hippocampal synapses. Neuron 16:1197–1207

    Article  PubMed  CAS  Google Scholar 

  8. Trudeau LE, Doyle RT, Emery DG, et al (1996) Calcium-independent activation of the secretory apparatus by ruthenium red in hippocampal neurons: a new tool to assess modulation of presynaptic function. J Neurosci 16:46–54

    PubMed  CAS  Google Scholar 

  9. Trudeau LE, Emery DG, Haydon PG (1996) Direct modulation of the secretory machinery underlies PKA-dependent synaptic facilitation in hippocampal neurons. Neuron 17:789–797

    Article  PubMed  CAS  Google Scholar 

  10. Ashton AC, Volynski KE, Lelianova VG, et al (2001) α-Latrotoxin, acting via two Ca2+-dependent pathways, triggers exocytosis of two pools of synaptic vesicles. J Biol Chem 276:44695–44703

    Article  PubMed  CAS  Google Scholar 

  11. Sudhof TC (2001) Alpha-latrotoxin and its receptors: neurexins and CIRL/latrophilins. Annu Rev Neurosci 24:933–962

    Article  PubMed  CAS  Google Scholar 

  12. Ushkaryov YA, Volynski KE, Ashton AC (2004) The multiple actions of black widow spider toxins and their selective use in neurosecretion studies. Toxicon 43:527–542

    Article  PubMed  CAS  Google Scholar 

  13. Lopatina LP, Vasim TV, Fedorovich SV, et al (2005) Lanthanides induce neurotransmitter release from the vesicular pool in rat brain synaptosomes. Biofizika 50:1120–1124 (In Russian)

    PubMed  CAS  Google Scholar 

  14. Waseem TV, Rakovich AA, Lavrukevich TV, et al (2005) Calcium regulates the mode of exocytosis induced by hypotonic shock in isolated neuronal presynaptic endings. Neurochem Int 46:235–242

    Article  PubMed  CAS  Google Scholar 

  15. Waseem TV, Kolos VA, Lapatsina LP, et al (2006) Influence of cholesterol depletion in plasma membrane of rat brain synaptosomes on calcium-dependent and calcium-independent exocytosis. Neurosci Lett 405:106–110

    Article  PubMed  CAS  Google Scholar 

  16. Chen BM, Grinnell AD (1995) Integrins and modulation of transmitter release from motor nerve terminals by stretch. Science 269:1578–1580

    Article  PubMed  CAS  Google Scholar 

  17. Chen BM, Grinnell AD (1997) Kinetics, Ca2+ dependence, and biophysical properties of integrin-mediated mechanical modulation of transmitter release from frog motor nerve terminals. J Neurosci 17:904–916

    PubMed  CAS  Google Scholar 

  18. Kashani AH, Chen BM, Grinnell AD (2001) Hypertonic enhancement of transmitter release from frog nerve terminals: Ca2+ independence and role of integrins. J Physiol 530(2):243–252

    Article  PubMed  CAS  Google Scholar 

  19. Suzuki K, Grinnell AD, Kidokoro Y (2002) Hypertonicity-induced transmitter release at drosophila neuromuscular junctions is partly mediated by integrins and cAMP/protein kinase A. J Physiol 538(1):103–119

    Article  PubMed  CAS  Google Scholar 

  20. Tapia R, Arias C, Morales E (1985) Binding of lanthanum ions and ruthenium red to synaptosomes and its effects on neurotransmitter release. J Neurochem 45:1464–1470

    Article  PubMed  CAS  Google Scholar 

  21. Gundelfinger ED, Kessels MM, Qualmann B (2003) Temporal and spatial coordination of exocytosis and endocytosis. Nat Rev Mol Cell Biol 4:127–139

    Article  PubMed  CAS  Google Scholar 

  22. Waseem TV, Konev SV, Fedorovich SV (2004) Influence of hypotonic shock on glutamate and GABA uptake in rat brain synaptosomes. Neurochem Res 29:1653–1658

    Article  PubMed  CAS  Google Scholar 

  23. Khvotchev M, Lonart G, Sudhof TC (2000) Role of calcium in neurotransmitter release evoked by alpha-latrotoxin or hypertonic sucrose. Neuroscience 101:793–802

    Article  PubMed  CAS  Google Scholar 

  24. Ashton AC, Ushkaryov YA (2005) Properties of synaptic vesicle pools in mature central nerve terminals. J Biol Chem 280:37278–37288

    Article  PubMed  CAS  Google Scholar 

  25. Bahr BA, Sheppard A, Vanderklish PW, et al (1991) Antibodies to the α(v)β integrin label a protein concentrated in brain synaptosomal membranes. NeuroReport 2:321–324

    Article  PubMed  CAS  Google Scholar 

  26. Bahr BA, Staubli U, Xiao P, et al (1997) Arg-gly-asp-ser-selective adhesion and the stabilization of long-term potentiation: phramacological studies and the characterization of a candidate matrix receptor. J Neurosci 17:1320–1329

    PubMed  CAS  Google Scholar 

  27. Capaldi D, Rosario R, Esteban ET, et al (1997) A 27-kDa matrix receptor from rat brain synaptosomes: selective recognition of the arg-gly-asp-ser domain and unique resistance to calcium-dependent proteolsis. Neurosci Res 28:275–279

    Article  PubMed  CAS  Google Scholar 

  28. Hynes RO (2002) Integrins: bidirectional, allosteric signaling machines. Cell 110:673–687

    Article  PubMed  CAS  Google Scholar 

  29. Hajos P (1975) An improved method for the preparation of synaptosomal fraction in high purity. Brain Res 93:485–489

    Article  PubMed  CAS  Google Scholar 

  30. Raiteri L, Zappetini S, Milanese M, et al (2007) Mechanisms of glutamate release elicited in rat cerebrocortical nerve endings by ‘pathologically’ elevated extraterminal K+ concentrations. J Neurochem 103:952–961

    Article  PubMed  CAS  Google Scholar 

  31. Cousin MA, Robinson PJ (2000) Two mechanisms of synaptic vesicle recycling in rat brain nerve terminals. J Neurochem 75:1645–1653

    Article  PubMed  CAS  Google Scholar 

  32. Born GV (1962) Aggregation of blood platelets by adenosine diphosphate and its reversal. Nature 194:927–929

    Article  PubMed  CAS  Google Scholar 

  33. Lowry O, Rosenbrough H, Farr H, et al (1951) Protein measurements with Folin reagent. J Biol Chem 193:265–279

    PubMed  CAS  Google Scholar 

  34. Bonvento G, Sibson N, Pellerin L (2002) Does glutamate image your thoughts? Trends Neurosci 25:359–364

    Article  PubMed  CAS  Google Scholar 

  35. Miesenbock G, De Angelis DA, Rothman JE (1998). Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature 394:192–195

    Article  PubMed  CAS  Google Scholar 

  36. Zoccarto F, Cavallini L, Alexandre A (1999) The pH-sensitive dye acridine orange as a tool to monitor exocytosis/endocytosis in synaptosomes. J Neurochem 72:625–633

    Article  Google Scholar 

  37. Vasim TV, Lavrukevich TV, Rakovich AA, et al (2004) Influence of calcium ionophore A23187 on neurotransmitter release in rat brain synaptosomes. Biofizika 49:524–528 (In Russian)

    PubMed  CAS  Google Scholar 

  38. Chavis P, Westbrook G (2001). Integrins mediate functional pre- and postsynaptic maturation at a hippocampal synapse. Nature 411:317–321

    Article  PubMed  CAS  Google Scholar 

  39. Moulder KL, Mennerick S (2005) Reductant vesicles contribute to the total readily releasable pool in glutamatergic hippocampal neurons. J Neurosci 25:3842–3850

    Article  PubMed  CAS  Google Scholar 

  40. Verderio C, Pozzi D, Pravettoni E, et al (2004) SNAP-25 modulation of calcium dynamics underlies differences in GABAergic and glutamatergic responsiveness to depolarization. Neuron 41:599–610

    Article  PubMed  CAS  Google Scholar 

  41. Bragina L, Candiracci C, Barbaresi P, et al (2007) Heterogenity of glutamatergic and gabaergic release machinery in cerebral cortex. Neuroscience 146:1829–1840

    Article  PubMed  CAS  Google Scholar 

  42. Waseem TV, Kolos VA, Lapatsina LP, et al (2007) Hypertonic shrinking but not hypotonic swelling increases sodium concentration in rat brain synaptosomes. Brain Res Bull 73:135–142

    Article  PubMed  CAS  Google Scholar 

  43. Grace EA, Busciglio J (2002) Aberrant activation of focal adhesion proteins mediates fibrillar amyloid β-induced neuronal dystrophy. J Neurosci 23:493–502

    Google Scholar 

  44. Feligioni M, Raiteri L, Pattarini R, et al (2003) The human immunodeficiency virus-1 protein Tat and its discrete fragments evoke selective release of acetylcholine from human and rat cerebrocortical terminals through species-specific mechanisms. J Neurosci 23:6810–6818

    PubMed  CAS  Google Scholar 

  45. Dunina-Barkovskaya AY, Levina NN, Lew RR, et al (2004) Gadolinium effects on gigaseseal formation and the adhesive properties of a fungal amoeboid cell, the slime mutant of neurospora crassa. J Membr Biol 198:77–87

    Article  PubMed  CAS  Google Scholar 

  46. Cheng Y, Liu M, Li R, et al (1999) Gadolinium indices domain and pore formation of human erythrocyte membrane: an atomic force microscopic study. Biochem Biophys Acta 1421:249–260

    Article  PubMed  CAS  Google Scholar 

  47. Caldwell RA, Clemo HF, Baumgarten CM (1998) Using gadolinium to identify stretch-activated channels: technical considerations. Am J Physiol 275(Cell Physiol. 44):C619–C621

    Google Scholar 

  48. Ermakov YA, Averbakh AZ, Yusipovich AI, et al (2001) Dipole potentials indicate restructuring of the membrane interface induced by gadolinium and beryllium ions. Biophys J 80:1851–1862

    Article  PubMed  CAS  Google Scholar 

  49. McKinney RA, Capogna M, Dürr R, et al (1999). Miniature synaptic events maintain dendritic spines via AMPA receptor activation. Nat Neurosci 2:44–49

    Article  PubMed  CAS  Google Scholar 

  50. Bouron A (2001) Modulation of spontaneous quantal release of neurotransmitters in the hippocampus. Prog Neurobiol 63:613–635

    Article  PubMed  CAS  Google Scholar 

  51. Glitsch MD (2007) Spontaneous neurotransmitter release and Ca2+—how spontaneous is spontaneous neurotransmitter release? Cell Calcium (in press)

Download references

Acknowledgments

This work was supported by The Physiological Society “Centres of excellence” scheme. Initial experiments were supported by The Wellcome Trust (grant 069417/Z/02/Z). We thank Dr. Ewan Smith for improvement of English. We thank Prof. E. Slobozhanina for access to aggregometer and Dr. N. Paulava for assistance in measurement of synaptosomes aggregation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergei V. Fedorovich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Waseem, T.V., Lapatsina, L.P. & Fedorovich, S.V. Influence of Integrin-blocking Peptide on Gadolinium- and Hypertonic Shrinking-induced Neurotransmitter Release in Rat Brain Synaptosomes. Neurochem Res 33, 1316–1324 (2008). https://doi.org/10.1007/s11064-007-9585-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-007-9585-5

Keywords

Navigation