Skip to main content

Advertisement

Log in

Comparison of Ionized Calcium-binding Adapter Molecule 1 Immunoreactivity of the Hippocampal Dentate Gyrus and CA1 Region in Adult and Aged Dogs

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Similarities between age-related changes in the canine and human brain have resulted in the general acceptance of the canine brain as a model of human brain aging. The hippocampus is essentially required for intact cognitive ability and appears to be particularly vulnerable to the aging process. We observed changes in ionized calcium-binding adapter molecule 1 (Iba-1, a microglial marker) immunoreactivity and protein levels in the hippocampal dentate gyrus and CA1 region of adult (2–3 years) and aged (10–12 years) dogs. We also observed the interferon-γ (IFN-γ), a pro-inflammatory cytokine, protein levels in these groups. In the dentate gyrus and CA1 region of the adult dog, Iba-1 immunoreactive microglia were well distributed and their processes were highly ramified. However, in the aged dog, the processes of Iba-1 immunoreactive microglia were hypertrophied in the dentate gyrus. Moreover, Iba-1 protein level in the dentate gyrus in the aged dog was higher than in the adult dog. IFN-γ expression was increased in the dentate gyrus homogenates of aged dogs than adult dogs. In addition, we found that some neurons were positive to Fluoro-Jade B (a marker for neuronal degeneration) in the dentate polymorphic layer, but not in the hippocampal CA1 region in the aged dog. These results suggest that Iba-1 immunoreactive microglia are hypertrophied in the dentate gyrus in the aged dog.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Streit WJ, Graeber MB, Kreutzberg GW (1988) Functional plasticity of microglia: a review. Glia 1:301–307

    Article  PubMed  CAS  Google Scholar 

  2. Graeber MB, Streit WJ (1990) Microglia: immune network in the CNS. Brain Pathol 1:2–5

    Article  PubMed  CAS  Google Scholar 

  3. Fu D, Guo Q, Ai Y, Cai H, Yan J, Dai R (2006) Glial activation and segmental upregulation of interleukin-1β (IL-1β) in the rat spinal cord after surgical incision. Neurochem Res 31:333–340

    Article  PubMed  CAS  Google Scholar 

  4. Kreutzberg GW (1996) Microglia: a sensor for pathological events in the CNS. Trends Neurosci 19:312–318

    Article  PubMed  CAS  Google Scholar 

  5. Ambrosini E, Aloisi F (2004) Chemokines and glial cells: a complex network in the central nervous system. Neurochem Res 29:1017–1038

    Article  PubMed  CAS  Google Scholar 

  6. Minghetti L, Visentin S, Patrizio M, Franchini L, Ajmone-Cat MA, Levi G (2004) Multiple actions of the human immunodeficiency virus type-1 Tat protein on microglial cell functions. Neurochem Res 29:965–978

    Article  PubMed  CAS  Google Scholar 

  7. Ling EA, Wong WC (1993) The origin and nature of ramified and amoeboid microglia: a historical review and current concepts. Glia 7:9–18

    Article  PubMed  CAS  Google Scholar 

  8. Lu T, Pan Y, Kao SY et al (2004) Gene regulation and DNA damage in the ageing human brain. Nature 429:883–891

    Article  PubMed  CAS  Google Scholar 

  9. Ma L, Morton AJ, Nicholson LF (2003) Microglia density decreases with age in a mouse model of Huntington’s disease. Glia 43:274–280

    Article  PubMed  Google Scholar 

  10. Morris RGM, Garrund P, Rawlins JN, O’Keefe J (1982) Place navigation impaired in rats with hippocampal lesions. Nature 297:681–683

    Article  PubMed  CAS  Google Scholar 

  11. Hwang IK, Yoo KY, Kim DW et al (2006) Ionized calcium-binding adapter molecule 1 immunoreactive cells change in the gerbil hippocampal CA1 region after ischemia/reperfusion. Neurochem Res 31:957–965

    Article  PubMed  CAS  Google Scholar 

  12. Fultz M, Barber S, Dieffenbach C, Vogel S (1993) Induction of IFN-γ in macrophages by lipopolysaccharide. Int Immunol 5:1383–1392

    Article  PubMed  CAS  Google Scholar 

  13. De Simone R, Levi G, Aloisi F (1998) Interferon-gamma gene expression in rat central nervous system glial cells. Cytokine 10:418–422

    Article  PubMed  Google Scholar 

  14. Morrison JH, Hof PR (1997) Life and death of neurons in the aging brain. Science 278:412–419

    Article  PubMed  CAS  Google Scholar 

  15. Hwang IK, Kim DW, Jung JY et al (2005) Age-dependent changes of pyridoxal phosphate synthesizing enzymes immunoreactivities and activities in the gerbil hippocampal CA1 region. Mech Ageing Dev 126:1322–1330

    Article  PubMed  CAS  Google Scholar 

  16. Hwang IK, Yoo KY, Jung BK et al (2006) Correlations between neuronal loss, decrease of memory, and decrease expression of brain-derived neurotrophic factor in the gerbil hippocampus during normal aging. Exp Neurol 201:75–83

    Article  PubMed  CAS  Google Scholar 

  17. Hwang IK, Moon SM, Yoo KY et al (2007) c-Myb immunoreactivity, protein and mRNA levels significantly increase in the aged hippocampus proper in gerbils. Neurochem Res 32:1091–1097

    Article  PubMed  CAS  Google Scholar 

  18. Sultana R, Butterfield DA (2007) Regional expression of key cell cycle proteins in brain from subjects with amnestic mild cognitive impairment. Neurochem Res 32:655–662

    Article  PubMed  CAS  Google Scholar 

  19. Cummings BJ, Head E, Ruehl W, Milgram NW, Cotman CW (1996) The canine as an animal model of human aging and dementia. Neurobiol Aging 17:259–268

    Article  PubMed  CAS  Google Scholar 

  20. Pugliese M, Carrasco JL, Andrade C, Mas E, Mascort J, Mahy N (2005) Severe cognitive impairment correlates with higher cerebrospinal fluid levels of lactate and pyruvate in a canine model of senile dementia. Prog Neuropsychopharmacol Biol Psychiatry 29:603–610

    Article  PubMed  CAS  Google Scholar 

  21. Pugliese M, Carrasco JL, Geloso MC, Mascort J, Michetti F, Mahy N (2004) γ-Aminobutyric acidergic interneuron vulnerability to aging in canine prefrontal cortex. J Neurosci Res 77:913–920

    Article  PubMed  CAS  Google Scholar 

  22. Borràs D, Ferrer I, Pumarola M (1999) Age-related changes in the brain of the dog. Vet Pathol 36:202–211

    Article  PubMed  Google Scholar 

  23. Shimada A, Kuwamura M, Awakura T, Umemura T, Itakura C (1992) An immunohistochemical and ultrastructural study on age-related astrocytic gliosis in the central nervous systems of dogs. J Vet Med Sci 54:29–36

    PubMed  CAS  Google Scholar 

  24. Ogura K, Ogawa M, Yoshida M (1994) Effects of ageing on microglia in the normal rat brain: immunohistochemical observations. Neuroreport 5:1224–1226

    PubMed  CAS  Google Scholar 

  25. Sheffield LG, Berman NE (1998) Microglial expression of MHC class II increases in normal aging of nonhuman primates. Neurobiol Aging 19:47–55

    Article  PubMed  CAS  Google Scholar 

  26. Candelario-Jalil E, Alvarez D, Merino N, León OS (2003) Delayed treatment with nimesulide reduces measures of oxidative stress following global ischemic brain injury in gerbils. Neurosci Res 47:245–253

    Article  PubMed  CAS  Google Scholar 

  27. Schmued LC, Hopkins KJ (2000) Fluoro-Jade B: a high affinity fluorescent marker for the localization of neuronal degeneration. Brain Res 874:123–130

    Article  PubMed  CAS  Google Scholar 

  28. Lim RKS, Liu CN, Moffitt RL (1960) A stereotaxic atlas of the dogs brain. Charles C Thomas, Springfield

    Google Scholar 

  29. Griffin R, Nally R, Nolan Y, McCartney Y, Linden J, Lynch MA (2006) The age-related attenuation in long-term potentiation is associated with microglial activation. J Neurochem 99:1263–1272

    Article  PubMed  CAS  Google Scholar 

  30. Murray CA, Lynch MA (1998) Evidence that increased hippocampal expression of the cytokine interleukin-1β is a common trigger for age- and stress-induced impairments in long-term potentiation. J Neurosci 18:2974–2981

    PubMed  CAS  Google Scholar 

  31. Maher FO, Nolan Y, Lynch MA (2005) Downregulation of IL-4-induced signalling in hippocampus contributes to deficits in LTP in the aged rat. Neurobiol Aging 26:717–728

    Article  PubMed  CAS  Google Scholar 

  32. Streit WJ, Sammons NW, Kuhns AJ, Sparks DL (2004) Dystrophic microglia in the aging human brain. Glia 45:208–212

    Article  PubMed  Google Scholar 

  33. Perry VH, Gordon S (1991) Macrophages and the nervous system. Int Rev Cytol 125:203–244

    Article  PubMed  CAS  Google Scholar 

  34. Ward SA, Ransom PA, Booth PL, Thomas WE (1991) Characterization of ramified microglia in tissue culture: pinocytosis and motility. J Neurosci Res 29:13–28

    Article  PubMed  CAS  Google Scholar 

  35. Long JM, Kalehua AN, Muth NJ et al (1998) Stereological analysis of astrocyte and microglia in aging mouse hippocampus. Neurobiol Aging 19:497–503

    Article  PubMed  CAS  Google Scholar 

  36. Nicolle MM, Gonzalez J, Sugaya K et al (2001) Signatures of hippocampal oxidative stress in aged spatial learning-impaired rodents. Neuroscience 107:415–431

    Article  PubMed  CAS  Google Scholar 

  37. Siwak-Tapp CT, Head E, Muggenburg BA, Milgram NW, Cotman CW (2008) Region specific neuron loss in the aged canine hippocampus is reduced by enrichment. Neurobiol Aging 29:39–50

    Article  PubMed  Google Scholar 

  38. Simic G, Bexheti S, Kelovic Z et al (2005) Hemispheric asymmetry, modular variability and age-related changes in the human entorhinal cortex. Neuroscience 130:911–925

    Article  PubMed  CAS  Google Scholar 

  39. West MJ (1993) Regionally specific loss of neurons in the aging human hippocampus. Neurobiol Aging 14:287–293

    Article  PubMed  CAS  Google Scholar 

  40. West MJ, Kawas CH, Martin LJ, Troncoso JC (2000) The CA1 region of the human hippocampus is a hot spot in Alzheimer’s disease. Ann NY Acad Sci 908:255–259

    Article  PubMed  CAS  Google Scholar 

  41. Rofina J, van Andel I, van Ederen AM, Papaioannou N, Yamaguchi H, Gruys E (2003) Canine counterpart of senile dementia of the Alzheimer type: amyloid plaques near capillaries but lack of spatial relationship with activated microglia and macrophages. Amyloid 10:86–96

    PubMed  CAS  Google Scholar 

  42. Pugliese M, Geloso MC, Carrasco JL, Michetti JMF, Mahy N (2006) Canine cognitive deficit correlates with diffuse plaque maturation and S100β (-) astrocytosis but not with insulin cerebrospinal fluid level. Acta Neuropathol 111:519–528

    Article  PubMed  Google Scholar 

  43. Wei YP, Kita M, Shinmura K et al (2000) Expression of IFN-γ in cerebrovascular endothelial cells from aged mice. J Interferon Cytokine Res 20:403–409

    Article  PubMed  CAS  Google Scholar 

  44. Mogi M, Kondo T, Mizuno Y, Nagatsu T (2007) p53 protein, interferon-γ, and NF-κB levels are elevated in the parkonsonian brain. Neurosci Lett 414:94–97

    Article  PubMed  CAS  Google Scholar 

  45. Nagatsu T, Sawada M (2005) Inflammatory process in Parkinson’s disease: role for cytokines. Curr Pharm Design 11:999–1016

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Mr. Seok Han, Mr. Seung Uk Lee and Ms. Hyun Sook Kim for their technical help in this study. This work was supported partially by the MRC program of MOST/KOSEF (R13-2005-022-01002-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moo-Ho Won.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hwang, I.K., Lee, C.H., Li, H. et al. Comparison of Ionized Calcium-binding Adapter Molecule 1 Immunoreactivity of the Hippocampal Dentate Gyrus and CA1 Region in Adult and Aged Dogs. Neurochem Res 33, 1309–1315 (2008). https://doi.org/10.1007/s11064-007-9584-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-007-9584-6

Keywords

Navigation