Skip to main content

Advertisement

Log in

Adenylyl Cyclase/cAMP System Involvement in the Antiangiogenic Effect of Somatostatin in the Retina. Results from Transgenic Mice

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Neoangiogenesis is a response to retinal hypoxia that is inhibited by somatostatin (SRIF) through its subtype 2 receptor (sst2). Using a mouse model of hypoxia-induced retinopathy, we investigated whether inhibition of adenylyl cyclase (AC) is involved in SRIF anti-angiogenic actions. Hypoxia increased AC responsiveness in wild type (WT) retinas and in retinas lacking sst2, but not in sst2-overexpressing retinas. Hypoxia also altered AC isoform expression with different patterns depending on sst2 expression level. The AC VII isoform mRNA and protein resulted the most affected. Indeed, in hypoxia AC VII expression was enhanced in WT retinas and it was further increased in sst2-lacking retinas, whereas in sst2 overexpressing retinas the increase of AC VII was lower than in WT retinas. These data suggest an involvement of AC/cAMP in mediating both hypoxia-evoked retinal neoangiogenesis and SRIF protective actions. The AC VII isoform is a candidate to a main role in these mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Campochiaro PA (2004) Ocular neovascularisation and excessive vascular permeability. Expert Opin Biol Ther 4:1395–1402

    Article  PubMed  CAS  Google Scholar 

  2. Gariano RF, Gardner TW (2005) Retinal angiogenesis in development and disease. Nature 438:960–966

    Article  PubMed  CAS  Google Scholar 

  3. Baldysiak-Figiel A, Lang GK, Kampmeier J et al (2004) Octreotide prevents growth factor-induced proliferation of bovine retinal endothelial cells under hypoxia. J Endocrinol 180:417–424

    Article  PubMed  CAS  Google Scholar 

  4. Grant MB, Mames RN, Fitzgerald C et al (2000) The efficacy of octreotide in the therapy of severe nonproliferative and early proliferative diabetic retinopathy: a randomized controlled study. Diabetes Care 23:504–509

    Article  PubMed  CAS  Google Scholar 

  5. Simo R, Lecube A, Sararols L et al (2002) Deficit of somatostatin-like immunoreactivity in the vitreous fluid of diabetic patients: possible role in the development of proliferative diabetic retinopathy. Diabetes Care 25:2282–2286

    Article  PubMed  CAS  Google Scholar 

  6. Davis MI, Wilson SH, Grant MB (2001) The therapeutic problem of proliferative diabetic retinopathy: targeting somatostatin receptors. Horm Metab Res 33:295–299

    Article  PubMed  CAS  Google Scholar 

  7. Grant MB, Caballero S (2002) Somatostatin analogues as drug therapies for retinopathies. Drugs Today 38:783–791

    Article  PubMed  CAS  Google Scholar 

  8. Garcia de la Torre N, Wass JA, Turner HE (2002) Antiangiogenic effects of somatostatin analogues. Clin Endocrinol 57:425–441

    Article  Google Scholar 

  9. Sall JW, Klisovic DD, O’Dorisio MS et al (2004) Somatostatin inhibits IGF-1 mediated induction of VEGF in human retinal pigment epithelial cells. Exp Eye Res 79:465–476

    Article  PubMed  CAS  Google Scholar 

  10. Dasgupta P (2004) Somatostatin analogues: multiple roles in cellular proliferation, neoplasia, and angiogenesis. Pharmacol Ther 102:61–85

    Article  PubMed  CAS  Google Scholar 

  11. Weckbecker G, Lewis I, Albert R et al (2003) Opportunities in somatostatin research: biological, chemical and therapeutic aspects. Nat Rev Drug Discov 2:999–1017

    Article  PubMed  CAS  Google Scholar 

  12. Pavan B, Fiorini S, Dal Monte M et al (2004) Somatostatin coupling to adenylyl cyclase activity in the mouse retina. Naunyn-Schmiedebergs Arch Pharmacol 370:91–98

    PubMed  CAS  Google Scholar 

  13. Olias G, Viollet C, Kusserow H et al (2004) Regulation and function of somatostatin receptors. J Neurochem 89:1057–1091

    Article  PubMed  CAS  Google Scholar 

  14. Hanoune J, Defer N (2001) Regulation and role of adenylyl cyclase isoforms. Annu Rev Pharmacol Toxicol 41:145–174

    Article  PubMed  CAS  Google Scholar 

  15. Beitz E, Volkel H, Guo Y et al (1998) Adenylyl cyclase type 7 is the predominant isoform in the bovine retinal pigment epithelium. Acta Anat 162:157–162

    Article  PubMed  CAS  Google Scholar 

  16. Abdel-Majid RM, Tremblay F, Baldridge WH (2002) Localization of adenylyl cyclase proteins in the rodent retina. Brain Res Mol Brain Res 101:62–70

    Article  PubMed  CAS  Google Scholar 

  17. Amano H, Ando K, Minamida S et al (2001) Adenylate cyclase/protein kinase A signaling pathway enhances angiogenesis through induction of vascular endothelial growth factor in vivo. Jpn J Pharmacol 87:181–188

    Article  PubMed  CAS  Google Scholar 

  18. Sakurai S, Alam S, Pagan-Mercado G et al (2002) Retinal capillary pericyte proliferation and c-Fos mRNA induction by prostaglandin D2 through the cAMP response element. Invest Ophthalmol Vis Sci 43:2774–2781

    PubMed  Google Scholar 

  19. Casibang M, Purdom S, Jakowlew S et al (2001) Prostaglandin E2 and vasoactive intestinal peptide increase vascular endothelial cell growth factor mRNAs in lung cancer cells. Lung Cancer 31:203–212

    Article  PubMed  CAS  Google Scholar 

  20. Schwarz N, Renshaw D, Kapas S et al (2006) Adrenomedullin increases the expression of calcitonin-like receptor and receptor activity modifying protein 2 mRNA in human microvascular endothelial cells. J Endocrinol 190:505–514

    Article  PubMed  CAS  Google Scholar 

  21. Dal Monte M, Petrucci C, Cozzi A et al (2003) Somatostatin inhibits potassium evoked glutamate release by activation of the sst2 somatostatin receptor in the mouse retina. Naunyn-Schmiedebergs Arch Pharmacol 367:188–192

    Article  PubMed  CAS  Google Scholar 

  22. Dal Monte M, Petrucci C, Vasilaki A et al (2003) Genetic deletion of somatostatin receptor 1 alters somatostatinergic transmission in the mouse retina. Neuropharmacology 45:1080–1092

    Article  PubMed  CAS  Google Scholar 

  23. Casini G, Dal Monte M, Petrucci C et al (2004) Altered morphology of rod bipolar cell axonal terminals in the retinas of mice carrying genetic deletion of somatostatin subtype receptor 1 or 2. Eur J Neurosci 19:43–54

    Article  PubMed  Google Scholar 

  24. Dal Monte M, Cammalleri M, Martini D et al (2007) Anti-angiogenic role of somatostatin receptor 2 in a model of hypoxia-induced neovascularization in the retina: results from transgenic mice. Invest Ophthalmol Vis Sci 48:3480–3489

    Article  PubMed  Google Scholar 

  25. Kreienkamp HJ, Akgun E, Baumeister H et al (1999) Somatostatin receptor subtype 1 modulates basal inhibition of growth hormone release in somatotrophs. FEBS Lett 462:464–466

    Article  PubMed  CAS  Google Scholar 

  26. Allen JP, Hathway GJ, Clarke NJ et al (2003) Somatostatin receptor 2 knockout/lacZ knockin mice show impaired motor coordination and reveal sites of somatostatin action within the striatum. Eur J Neurosci 17:1881–1895

    Article  PubMed  Google Scholar 

  27. Smith LE, Wesolowski E, McLellan A et al (1994) Oxygen-induced retinopathy in the mouse. Invest Ophthalmol Vis Sci 35:101–111

    PubMed  CAS  Google Scholar 

  28. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  29. Brown BL, Ekins RP, Albano JD (1972) Saturation assay for cyclic AMP using endogenous binding protein. Adv Cyclic Nucleotide Res 2:25–40

    PubMed  Google Scholar 

  30. Wang X, Seed B (2003) A PCR primer bank for quantitative gene expression analysis. Nucleic Acids Res 31:e154

    Article  PubMed  CAS  Google Scholar 

  31. Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132:365–386

    PubMed  CAS  Google Scholar 

  32. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  33. Tsai WH, Koh SW, Puro DG (1987) Epinephrine regulates cholinergic transmission mediated by rat retinal neurons in culture. Neuroscience 22:675–680

    Article  PubMed  CAS  Google Scholar 

  34. Colas B, Valencia AM, Prieto JC et al (1992) Somatostatin binding and modulation of adenylate cyclase in ovine retina membranes. Mol Cell Endocrinol 88:111–117

    Article  PubMed  CAS  Google Scholar 

  35. Masmoudi O, Gandolfo P, Tokay T et al (2005) Somatostatin down-regulates the expression and release of endozepines from cultured rat astrocytes via distinct receptor subtypes. J Neurochem 94:561–571

    Article  PubMed  CAS  Google Scholar 

  36. Watts VJ, Neve KA (2005) Sensitization of adenylate cyclase by Galpha i/o-coupled receptors. Pharmacol Ther 106:405–421

    Article  PubMed  CAS  Google Scholar 

  37. Takeo S, Niimura M, Miyake-Takagi K et al (2003) A possible mechanism for improvement by a cognition-enhancer nefiracetam of spatial memory function and cAMP-mediated signal transduction system in sustained cerebral ischaemia in rats. Br J Pharmacol 138:642–654

    Article  PubMed  CAS  Google Scholar 

  38. Zhao Y, Xu D, Quaegebeur JM et al (2002) Expression of adenylyl cyclase V/VI mRNA and protein is upregulated in cyanotic infant human myocardium. Pediatr Cardiol 23:536–541

    Article  PubMed  CAS  Google Scholar 

  39. Cooper DM, Crossthwaite AJ (2006) Higher-order organization and regulation of adenylyl cyclases. Trends Pharmacol Sci 27:426–431

    Article  PubMed  CAS  Google Scholar 

  40. Palmer GC (1985) Cyclic nucleotides in stroke and related cerebrovascular disorders. Life Sci 36:1995–2006

    Article  PubMed  CAS  Google Scholar 

  41. Rocha-Singh KJ, Honbo NY, Karliner JS (1991) Hypoxia and glucose independently regulate the beta-adrenergic receptor-adenylate cyclase system in cardiac myocytes. J Clin Invest 88:204–213

    Article  PubMed  CAS  Google Scholar 

  42. Kuroko Y, Yamazaki T, Tokunaga N et al (2007) Cardiac epinephrine synthesis and ischemia-induced myocardial epinephrine release. Cardiovasc Res 74:438–444

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Italian Ministry of University and Research (MUR, PRIN, grant 2005052312) and the Fondazione Cassa di Risparmio di Cento. We thank G. Bertolini (University of Pisa, Italy) for assistance with mouse colonies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carla Biondi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ristori, C., Ferretti, M.E., Pavan, B. et al. Adenylyl Cyclase/cAMP System Involvement in the Antiangiogenic Effect of Somatostatin in the Retina. Results from Transgenic Mice. Neurochem Res 33, 1247–1255 (2008). https://doi.org/10.1007/s11064-007-9576-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-007-9576-6

Keywords

Navigation