Skip to main content

Advertisement

Log in

α4β2-Nicotinic Receptor Binding with 5-IA in Alzheimer’s Disease: Methods of Scan Analysis

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Five patients with Alzheimer’s disease and five healthy volunteers were examined by SPECT with the nicotinic receptor ligand 123I-5-IA-85380. Patients were scanned before and after 6 weeks of treatment with donepezil. Quantification by regions of interest was reliable and the optimal normalisation procedure used cerebellar ratios. We found relative reductions in 5-IA binding capacity in patients in thalamus, frontal and central regions of interest of approximately one standard deviation unit (Cohen’s d = 1). Reductions in binding after treatment with the acetylcholinesterase inhibitor donepezil of the same magnitude occurred in the brain stem. The study was clearly too small to confirm group differences, but it suggests that 5-IA can be used to examine both group differences and treatment effects in patients with Alzheimer’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Martin-Ruiz C, Court J, Lee M, Piggott M, Johnson M, Ballard C, Kalaria R, Perry R, Perry E (2000) Nicotinic receptors in dementia of Alzheimer, Lewy body and vascular types. Acta Neurol Scand Suppl 176:34–41

    Article  PubMed  CAS  Google Scholar 

  2. Martin-Ruiz CM, Court JA, Molnar E, Lee M, Gotti C, Mamalaki A, Tsouloufis T, Tzartos S, Ballard C, Perry RH, Perry EK (1999) Alpha4 but not alpha3 and alpha7 nicotinic acetylcholine receptor subunits are lost from the temporal cortex in Alzheimer’s disease. J Neurochem 73:1635–1640

    Article  PubMed  CAS  Google Scholar 

  3. Wevers A, Monteggia L, Nowacki S, Bloch W, Schutz U, Lindstrom J, Pereira EFR, Eisenberg H, Giacobini E, de Vos RAI, Steur ENHJ, Maelicke A, Albuquerque EX, Schroder H (1999) Expression of nicotinic acetylcholine receptor subunits in the cerebral cortex in Alzheimer’s disease: histotopographical correlation with amyloid plaques and hyperphosphorylated-tau protein. Eur J Neurosci 11:2551–2565

    Article  PubMed  CAS  Google Scholar 

  4. Burghaus L, Schutz U, Krempel U, de Vos RAI, Jansen Steur ENH, Wevers A, Lindstrom J, Schroder H (2000) Quantitative assessment of nicotinic acetylcholine receptor proteins in the cerebral cortex of Alzheimer patients. Mol Brain Res 76:385–388

    Article  PubMed  CAS  Google Scholar 

  5. Dougall NJ, Bruggink S, Ebmeier KP (2004) Systematic review of the diagnostic accuracy of 99mTc-HMPAO-SPECT in dementia. Am J Geriatr Psychiatry 12:554–570

    Article  PubMed  Google Scholar 

  6. Mukhin AG, Gundisch D, Horti AG, Koren AO, Tamagnan G, Kimes AS, Chambers J, Vaupel DB, King SL, Picciotto MR, Innis RB, London ED (2000) 5-Iodo-A-85380, an alpha4beta2 subtype-selective ligand for nicotinic acetylcholine receptors. Mol Pharmacol 57:642–649

    PubMed  CAS  Google Scholar 

  7. Pimlott SL, Piggott M, Owens J, Greally E, Court JA, Jaros E, Perry RH, Perry EK, Wyper D (2004) Nicotinic acetylcholine receptor distribution in Alzheimer’s disease, dementia with Lewy bodies, Parkinson’s disease, and vascular dementia: in vitro binding study using 5-[(125)i]-a-85380. Neuropsychopharmacology 29:108–116

    Article  PubMed  CAS  Google Scholar 

  8. Mamede M, Ishizu K, Ueda M, Mukai T, Iida Y, Fukuyama H, Saga T, Saji H (2004) Quantification of human nicotinic acetylcholine receptors with 123I-5IA SPECT. J Nucl Med 45:1458–1470

    PubMed  CAS  Google Scholar 

  9. Fujita M, Seibyl JP, Vaupel DB, Tamagnan G, Early M, Zoghbi SS, Baldwin RM, Horti AG, Koren AO, Mukhin AG, Khan S, Bozkurt A, Kimes AS, London ED, Innis RB (2002) Whole-body biodistribution, radiation absorbed dose, and brain SPET imaging with [123I]5-I-A-85380 in healthy human subjects. Eur J Nucl Med Mol Imaging 29:183–190

    Article  PubMed  CAS  Google Scholar 

  10. Vaupel DB, Huso D, Tella S, Horti A, Koren A, Baum I, London ED, Kimes AS (2000) Acute toxicity and safety studies of 5-I-A-85380 and 2-F-A-85380, new radiotracers for imaging nicotinic acetylcholine receptors (nAChRs). Neuroscience 26:627

    Google Scholar 

  11. Mathuranath PS, Nestor PJ, Berrios GE, Rakowicz W, Hodges JR (2000) A brief cognitive test battery to differentiate Alzheimer’s disease and frontotemporal dementia. Neurology 55:1613–1620

    PubMed  CAS  Google Scholar 

  12. McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM (1984) Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA work group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s disease. Neurology 34:939–944

    PubMed  CAS  Google Scholar 

  13. World Health Organisation (1993) ICD-10. International classification of diseases version 10. WHO, Geneva

    Google Scholar 

  14. Rosen WG, Terry RD, Fuld EA, Katzman R, Peck A (1980) Pathological verification of ischemic score in differentiation of dementias. Ann Neurol 7:486–488

    Article  PubMed  CAS  Google Scholar 

  15. The Lund and Manchester Groups (1994) Clinical and neuropathological criteria for frontotemporal dementia. J Neurol Neurosurg Psychiatry 57:416–418

    Google Scholar 

  16. Yesavage JA (1988) Geriatric depression scale. Psychopharmacol Bull 24:709–711

    PubMed  CAS  Google Scholar 

  17. Baddeley A, Wilson BA (1994) When implicit learning fails: amnesia and the problem of error elimination. Neuropsychologia 32:53–68

    Article  PubMed  CAS  Google Scholar 

  18. Benedict RHB, Schretlen D, Groninger L, Brandt J (1998) Hopkins verbal learning test—revised: normative data and analysis of inter-form and test–retest reliability. Clin Neuropsychol 12:43–55

    Article  Google Scholar 

  19. Harrison JE, Buxton P, Husain M, Wise R (2000) Short test of semantic and phonological fluency: normal performance, validity and test–retest reliability. Br J Clin Psychol 39:181–191

    Article  PubMed  Google Scholar 

  20. Benton AL, Hamsher K, Sivan AB (1994) Multilingual aphasia examination. AJA Associates, Iowa City

    Google Scholar 

  21. Kaplan E, Goodglass H, Weintraub S (1983) Boston naming test. Lea and Febiger, Philadelphia

    Google Scholar 

  22. Soonawala D, Amin T, Ebmeier KP, Steele JD, Dougall NJ, Best J, Migneco O, Nobili F, Scheidhauer K (2002) Statistical parametric mapping of 99mTc-HMPAO-SPECT images for the diagnosis of Alzheimer’s disease: normalizing to cerebellar tracer uptake. NeuroImage 17:1193–1202

    Article  PubMed  Google Scholar 

  23. Pickut BA, Dierckx RA, Dobbeleir A, Audenaert K, Van Laere K, Vervaet A, De Deyn PP (1999) Validation of the cerebellum as a reference region for SPECT quantification in patients suffering from dementia of the Alzheimer type. Psychiatry Res: Neuroimaging 90:103–112

    Article  PubMed  CAS  Google Scholar 

  24. Norbury R, Travis MJ, Erlandsson K, Waddington W, Owens J, Ell PJ, Murphy DG (2004) SPET imaging of central muscarinic receptors with (R,R)[123I]-I-QNB: methodological considerations. Nucl Med Biol 31:583–590

    Article  PubMed  CAS  Google Scholar 

  25. Talbot PR, Lloyd JJ, Snowden JS, Neary D, Testa HJ (1994) Choice of reference region in the quantification of single-photon emission tomography in primary degenerative dementia. Eur J Nucl Med 21:503–508

    Article  PubMed  CAS  Google Scholar 

  26. Elser H, Henze M, Spierer FJ, Georgi P (1996) Semiquantitative 99mTc-HMPAO SPECT in dementia of the Alzheimer type: influence of the selection of reconstruction filter and reference region. Nuklearmedizin 35:243–250

    PubMed  CAS  Google Scholar 

  27. Francis PT, Palmer AM, Snape M, Wilcock GK (1999) The cholinergic hypothesis of Alzheimer’s disease: a review of progress. J Neurol Neurosurg Psychiatry 66:137–147

    Article  PubMed  CAS  Google Scholar 

  28. Nordberg A, Winblad B (1986) Reduced number of [3H]nicotine and [3H]acetylcholine binding sites in the frontal cortex of Alzheimer brains. Neurosci Lett 72:115–119

    Article  PubMed  CAS  Google Scholar 

  29. Nordberg A, Lundqvist H, Hartvig P, Lilja A, Langstrom B (1995) Kinetic analysis of regional (S)(-)11C nicotine binding in normal and Alzheimer brains—in vivo assessment using positron emission tomography. Alzheimer Dis Assoc Disord 9:21–27

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Gordon Small Charitable Trust and the European Commission Network of Excellence "Diagnostic Molecular Imaging" (FP6-LIFESCIHEALTH Project Reference: 512146).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus P. Ebmeier.

Additional information

Special issue article in honor of George Fink.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Terrière, E., Sharman, M., Donaghey, C. et al. α4β2-Nicotinic Receptor Binding with 5-IA in Alzheimer’s Disease: Methods of Scan Analysis. Neurochem Res 33, 643–651 (2008). https://doi.org/10.1007/s11064-007-9517-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-007-9517-4

Keywords

Navigation