Skip to main content

Advertisement

Log in

Promotion of Neuronal Plasticity by (−)-Epigallocatechin-3-Gallate

  • Original paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The consumption of (−)-epigallocatechin-3-gallate (EGCG), the major polyphenolic compound found in green tea, has been associated with various neurological benefits including cognitive improvement. The physiological basis for this effect is unknown. In this study, we used synaptic transmission between the CA3 and CA1 regions (Schaffer collateral) of the mouse hippocampus to examine the effects of EGCG on neuronal plasticity. We found that the level of high frequency stimulation-evoked long-term potentiation (LTP) was significantly enhanced when hippocampal slices were pre-incubated with 10 μM EGCG for 1 h prior to the experiment. EGCG incubation also enabled hippocampal slices prepared from Ts65Dn mice, a Down syndrome mouse model deficient in LTP, to express LTP to a level comparable to the normal controls. EGCG treatment did not alter the degree of pair-pulse inhibition; therefore, the enhancement effect of EGCG is unlikely to involve the attenuation of this inhibitory mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Higdon JV, Frei B (2003) Tea catechins and polyphenols: health effects, metabolism, and antioxidant functions. Crit Rev Food Sci Nutr 43:89–143

    Article  PubMed  CAS  Google Scholar 

  2. Yang CS, Maliakal P, Meng X (2002) Inhibition of carcinogenesis by tea. Annu Rev Pharmacol Toxicol 42:25–54

    Article  PubMed  CAS  Google Scholar 

  3. Lin JK, Liang YC, Lin-Shiau SY (1999) Cancer chemoprevention by tea polyphenols through mitotic signal transduction blockade. Biochem Pharmacol 58:911–915

    Article  PubMed  CAS  Google Scholar 

  4. Mandel S, Weinreb O, Amit T et al (2004) Cell signaling pathways in the neuroprotective actions of the green tea polyphenol (−)-epigallocatechin-3-gallate: implications for neurodegenerative diseases. J Neurochem 88:1555–1569

    Article  PubMed  CAS  Google Scholar 

  5. Shirai N, Suzuki H (2004) Effect of dietary docosahexaenoic acid and catechins on maze behavior in mice. Ann Nutr Metab 48:51–58

    Article  PubMed  CAS  Google Scholar 

  6. Unno K, Takabayashi F, Kishido T et al (2004) Suppressive effect of green tea catechins on morphologic and functional regression of the brain in aged mice with accelerated senescence (SAMP10). Exp Gerontol 39:1027–1034

    Article  PubMed  CAS  Google Scholar 

  7. Haque AM, Hashimoto M, Katakura M et al (2006) Long-term administration of green tea catechins improves spatial cognition learning ability in rats. J Nutr 136:1043–1047

    PubMed  CAS  Google Scholar 

  8. van Praag H, Lucero MJ, Yeo GW et al (2007) Plant-derived flavanol (−)epicatechin enhances angiogenesis and retention of spatial memory in mice. J Neurosci 27:5869–5878

    Article  PubMed  CAS  Google Scholar 

  9. Reeves RH, Irving NG, Moran TH et al (1995) A mouse model for Down syndrome exhibits learning and behaviour deficits. Nat Genet 11:177–184

    Article  PubMed  CAS  Google Scholar 

  10. Akeson EC, Lambert JP, Narayanswami S et al (2001) Ts65Dn – localization of the translocation breakpoint and trisomic gene content in a mouse model for Down syndrome. Cytogenet Cell Genet 93:270–276

    Article  PubMed  CAS  Google Scholar 

  11. Reeves RH, Baxter LL, Richtsmeier JT (2001) Too much of a good thing: mechanisms of gene action in Down syndrome. Trends Genet 17:83–88

    Article  PubMed  CAS  Google Scholar 

  12. Escorihuela RM, Fernandez-Teruel A, Vallina IF et al (1995) A behavioral assessment of Ts65Dn mice: a putative Down syndrome model. Neurosci Lett 199:143–146

    Article  PubMed  CAS  Google Scholar 

  13. Demas GE, Nelson RJ, Krueger BK et al (1996) Spatial memory deficits in segmental trisomic Ts65Dn mice. Behav Brain Res 82:85–92

    Article  PubMed  CAS  Google Scholar 

  14. Holtzman DM, Santucci D, Kilbridge J et al (1996) Developmental abnormalities and age-related neurodegeneration in a mouse model of Down syndrome. Proc Natl Acad Sci USA 93:13333–13338

    Article  PubMed  CAS  Google Scholar 

  15. Fernandez F, Morishita W, Zuniga E et al (2007) Pharmacotherapy for cognitive impairment in a mouse model of Down syndrome. Nat Neurosci 10:411–413

    PubMed  CAS  Google Scholar 

  16. Siarey RJ, Stoll J, Rapoport SI et al (1997) Altered long-term potentiation in the young and old Ts65Dn mouse, a model for Down Syndrome. Neuropharmacology 36:1549–1554

    Article  PubMed  CAS  Google Scholar 

  17. Siarey RJ, Carlson EJ, Epstein CJ et al (1999) Increased synaptic depression in the Ts65Dn mouse, a model for mental retardation in Down syndrome. Neuropharmacology 38:1917–1920

    Article  PubMed  CAS  Google Scholar 

  18. Kleschevnikov AM, Belichenko PV, Villar AJ et al (2004) Hippocampal long-term potentiation suppressed by increased inhibition in the Ts65Dn mouse, a genetic model of Down syndrome. J Neurosci 24:8153–8160

    Article  PubMed  CAS  Google Scholar 

  19. Costa AC, Grybko MJ (2005) Deficits in hippocampal CA1 LTP induced by TBS but not HFS in the Ts65Dn mouse: a model of Down syndrome. Neurosci Lett 382:317–322

    Article  PubMed  CAS  Google Scholar 

  20. Ramakrishna N, Meeker C, Li S et al (2005) Polymerase chain reaction method to identify Down syndrome model segmentally trisomic mice. Anal Biochem 340:213–219

    Article  PubMed  CAS  Google Scholar 

  21. Anderson WW, Collingridge GL (2001) The LTP Program: a data acquisition program for on-line analysis of long-term potentiation and other synaptic events. J Neurosci Methods 108:71–83

    Article  PubMed  CAS  Google Scholar 

  22. El-Sherif Y, Tesoriero J, Hogan MV et al (2003) Melatonin regulates neuronal plasticity in the hippocampus. J Neurosci Res 72:454–460

    Article  PubMed  CAS  Google Scholar 

  23. Larson J, Wong D, Lynch G (1986) Patterned stimulation at the theta frequency is optimal for the induction of hippocampal long-term potentiation. Brain Res 368:347–350

    Article  PubMed  CAS  Google Scholar 

  24. Bronner WE, Beecher GR (1998) Method for determining the content of catechins in tea infusions by high-performance liquid chromatography. J Chromatogr A 805:137–142

    Article  PubMed  CAS  Google Scholar 

  25. Sang S, Lee MJ, Hou Z et al (2005) Stability of tea polyphenol (−)-epigallocatechin-3-gallate and formation of dimers and epimers under common experimental conditions. J Agric Food Chem 53:9478–9484

    Article  PubMed  CAS  Google Scholar 

  26. Rock DM, Taylor CP (1986) Effects of diazepam, pentobarbital, phenytoin and pentylenetetrazol on hippocampal paired-pulse inhibition in vivo. Neurosci Lett 65:265–270

    Article  PubMed  CAS  Google Scholar 

  27. Kapur J, Stringer JL, Lothman EW (1989) Evidence that repetitive seizures in the hippocampus cause a lasting reduction of GABAergic inhibition. J Neurophysiol 61:417–426

    PubMed  CAS  Google Scholar 

  28. Malenka RC, Bear MF (2004) LTP and LTD: an embarrassment of riches. Neuron 44:5–21

    Article  PubMed  CAS  Google Scholar 

  29. Siarey RJ, Kline-Burgess A, Cho M et al (2006) Altered signaling pathways underlying abnormal hippocampal synaptic plasticity in the Ts65Dn mouse model of Down syndrome. J Neurochem 98:1266–1277

    Article  PubMed  CAS  Google Scholar 

  30. Maher P, Akaishi T, Abe K (2006) Flavonoid fisetin promotes ERK-dependent long-term potentiation and enhances memory. Proc Natl Acad Sci USA 103:16568–16573

    Article  PubMed  CAS  Google Scholar 

  31. Kentrup H, Becker W, Heukelbach J et al (1996) Dyrk, a dual specificity protein kinase with unique structural features whose activity is dependent on tyrosine residues between subdomains VII and VIII. J Biol Chem 271:3488–3495

    Article  PubMed  CAS  Google Scholar 

  32. Guimerá J, Casas C, Pucharcòs C et al (1996) A human homologue of Drosophila minibrain (MNB) is expressed in the neuronal regions affected in Down syndrome and maps to the critical region. Hum Mol Genet 5:1305–1310

    Article  PubMed  Google Scholar 

  33. Shindoh N, Kudoh J, Maeda H et al (1996) Cloning of a human homolog of the Drosophila minibrain/rat DyrK gene from ‘the Down syndrome critical region” of chromosome 21. Biochem Biophys Res Commun 225:92–99

    Article  PubMed  CAS  Google Scholar 

  34. Song WJ, Sternberg LR, Kasten-Sportès C et al (1996) Isolation of human and murine homologues of the Drosophila minibrain gene: human homologue maps to 21q22.2 in the Down syndrome “critical region”. Genomics 38:331–339

    Article  PubMed  CAS  Google Scholar 

  35. Dowjat WK, Adayev T, Kuchna I et al (2007) Trisomy-driven overexpression of DYRK1A kinase in the brain of subjects with Down syndrome. Neurosci Lett 413:77–81

    Article  PubMed  CAS  Google Scholar 

  36. Chen-Hwang MC, Chen HR, Elzinga M et al (2002) Dynamin is a minibrain kinase/dual specificity Yak1-related kinase 1A substrate. J Biol Chem 277:17597–17604

    Article  PubMed  CAS  Google Scholar 

  37. Murakami N, Xie W, Lu RC et al (2006) Phosphorylation of amphiphysin 1 by Mnb/Dyrk1A, a kinase implicated in Down syndrome. J Biol Chem 281:23712–23724

    Article  PubMed  CAS  Google Scholar 

  38. Adayev T, Chen-Hwang MC, Murakami N et al (2006) MNB/DYRK1A phosphorylation regulates the interactions of synaptojanin 1 with endocytic accessory proteins. Biochem Biophys Res Commun 351:1060–1065

    Article  PubMed  CAS  Google Scholar 

  39. Bain J, McLauchlan H, Elliott M et al (2003) The specificities of protein kinase inhibitors: an update. Biochem J 371:199–204

    Article  PubMed  CAS  Google Scholar 

  40. Adayev T, Chen-Hwang MC, Murakami N et al (2006) Kinetic property of a MNB/DYRK1A mutant suitable for the elucidation of biochemical pathways. Biochem 45:12011–12019

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Drs. David Miller, Tatyana Adayev, Sarah Nolin, Carl Dobkin, Robert Denman, and Ms. Maureen Marlow for critical reading of this manuscript. This work was supported in part by the New York State Office of Mental Retardation and Developmental Disabilities and by NIH grants HD38295 to Y.W.H. and HD43960 to Dr. Jerzy Wegiel.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Wen Hwang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xie, W., Ramakrishna, N., Wieraszko, A. et al. Promotion of Neuronal Plasticity by (−)-Epigallocatechin-3-Gallate. Neurochem Res 33, 776–783 (2008). https://doi.org/10.1007/s11064-007-9494-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-007-9494-7

Keywords

Navigation