Skip to main content
Log in

The Role of 3-O-Methyldopa in the Side Effects of l-dopa

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Long-term treatment of l-dopa for Parkinson’s disease (PD) patients induces adverse effects, including dyskinesia, on–off and wearing-off symptoms. However, the cause of these side effects has not been established to date. In the present study, therefore, 3-O-methyldopa (3-OMD), which is a major metabolite of l-dopa, was tested to determine whether it plays a role in the aforementioned adverse effects. The effects of 3-OMD on the dopaminergic nervous system in the brain were investigated, by examining behavioral, biochemical, and cellular changes in male Sprague–Dawley rats and catecholamine-producing PC12 neuronal cells. The results revealed that the intracerebroventricular (icv) injection of 1 μmol of 3-OMD impaired locomotor activities by decreasing movement time (MT), total distance (TD), and the number of movement (NM) by 70, 74 and 61%, respectively. The biochemical analysis results showed that a single administration of 1 μmole of 3-OMD decreased the dopamine turnover rate (DOPAC/DA) by 40.0% in the rat striatum. 3-OMD inhibited dopamine transporter and uptake in rat brain striatal membranes and PC12 cells. The subacute administration of 3-OMD (5 days, icv) also significantly impaired the locomotor activities and catecholamine levels. 3-OMD induced cytotoxic effects via oxidative stress and decreased mitochondrial membrane potential in PC12 cells, indicating that 3-OMD can damage neuronal cells. Furthermore, 3-OMD potentiated l-dopa toxicity and these toxic effects induced by both 3-OMD and l-dopa were blocked by vitamin E (α-tocopherol) in PC12 cells, indicating that 3-OMD may increase the toxic effects of l-dopa to some extent by oxidative stress. Therefore, the present study reveals that 3-OMD accumulation from long-term l-dopa treatment may be involved in the adverse effects of l-dopa therapy. Moreover, l-dopa treatment might accelerate the progression of PD, at least in part, by 3-OMD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Muenter MD, Sharpless NS, Tyce GM (1972) Plasma 3-0-methyldopa in l-dopa therapy of Parkinson’s disease. Mayo Clin Proc 47:389–395

    PubMed  CAS  Google Scholar 

  2. Sharpless NS, Muenter MD, Tyce GM et al (1972) 3-methoxy-4-hydroxyphenylalanine (3-O-methyldopa) in plasma during oral l-dopa therapy of patients with Parkinson’s disease. Clin Chim Acta 37:359–369

    Article  PubMed  CAS  Google Scholar 

  3. Gervas JJ, Muradas V, Bazan E et al (1983) Effects of 3-OM-dopa on monoamine metabolism in rat brain. Neurology 33:278–282

    PubMed  CAS  Google Scholar 

  4. Tohgi H, Abe T, Takahashi S (1991b) Concentrations of tyrosine, l-dihydroxyphenylalanine, dopamine, and 3-O-methyldopa in the cerebrospinal fluid of Parkinson’s disease. Neurosci Lett 127:212–214

    Article  PubMed  CAS  Google Scholar 

  5. Miller JW, Shukitt-Hale B, Villalobos-Molina R et al (1997) Effect of l-Dopa and the catechol-O-methyltransferase inhibitor Ro 41-0960 on sulfur amino acid metabolites in rats. Clin Neuropharmacol 20:55–66

    Article  PubMed  CAS  Google Scholar 

  6. Kuruma I, Bartholini G, Tissot R et al (1971) The metabolism of l-3-O-methyldopa, a precursor of dopa in man. Clin Pharmacol Ther 12:678–82

    PubMed  CAS  Google Scholar 

  7. Marion MH, Stocchi F, Quinn NP et al (1986) Repeated levodopa infusions in fluctuating Parkinson’s disease: clinical and pharmacokinetic data. Clin Neuropharmacol 9:165–181

    Article  PubMed  CAS  Google Scholar 

  8. Marsden CD (1994) Problems with long-term levodopa therapy for Parkinson’s disease. Clin Neuropharmacol Suppl 2:S32–S44

    Google Scholar 

  9. Feuerstein C, Serre F, Gavend M et al (1977a) Plasma O-methyldopa in levodopa-induced dyskinesias. A bioclinical investigation. Acta Neurol Scand 56:508–524

    Article  PubMed  CAS  Google Scholar 

  10. Feuerstein C, Tauche M, Serre F et al (1977b) Does O-methyl-dopa play a role in levodopa-induced dyskinesias. Acta Neurol Scand 56:79–82

    Article  PubMed  CAS  Google Scholar 

  11. Mena MA, Muradas V, Bazan E et al (1987) Pharmacokinetics of l-dopa in patients with Parkinson’s disease. Adv Neurol 45:481–486

    PubMed  CAS  Google Scholar 

  12. Blandini F, Nappi G, Fancellu R et al (2003) Modifications of plasma and platelet levels of l-DOPA and its direct metabolites during treatment with tolcapone or entacapone in patients with Parkinson’s disease. J Neural Transm 110:911–922

    Article  PubMed  CAS  Google Scholar 

  13. Tohgi H, Abe T, Kikuchi T et al (1991a) The significance of 3-O-methyldopa concentrations in the cerebrospinal fluid in the pathogenesis of wearing-off phenomenon in Parkinson’s disease. Neurosci Lett 132:19–22

    Article  PubMed  CAS  Google Scholar 

  14. Fabbrini G, Juncos JL, Mouradian MM et al (1987) 3-O-methyldopa and motor fluctuations in Parkinson’s disease. Neurology 37:856–859

    PubMed  CAS  Google Scholar 

  15. Soares-da-Silva P, Parada A, Serrao P (2000) The O-methylated derivative of l-DOPA, 3-O-methyl-l-DOPA, fails to inhibit neuronal and non-neuronal aromatic l-amino acid decarboxylase. Brain Res 863:293–297

    Article  PubMed  CAS  Google Scholar 

  16. Reches A, Fahn S (1982) 3-O-methyldopa blocks dopa metabolism in rat corpus striatum. Ann Neurol 12:267–271

    Article  PubMed  CAS  Google Scholar 

  17. Benetello P, Furlanut M, Fortunato M et al (1997) Levodopa and 3-O-methyldopa in cerebrospinal fluid after levodopa-carbidopa association. Pharmacol Res 35:313–315

    Article  PubMed  CAS  Google Scholar 

  18. Cheng H, Gomes-Trolin C, Aquilonius SM et al (1997) Levels of l-methionine S-adenosyltransferase activity in erythrocytes and concentrations of S-adenosylmethionine and S-adenosylhomocysteine in whole blood of patients with Parkinson’s disease. Exp Neurol 145:580–585

    Article  PubMed  CAS  Google Scholar 

  19. Zhao WQ, Latinwo L, Liu XX et al (2001) l-dopa upregulates the expression and activities of methionine adenosyl transferase and catechol-O-methyltransferase. Exp Neurol 171:127–138

    Article  PubMed  CAS  Google Scholar 

  20. Chang WY, Webster RA (1995) Effects of 3-O-methyl on l-dopa-facilitated synthesis and efflux of dopamine from rat striatal slices. Br J Pharmacol 116:2637–2640

    PubMed  CAS  Google Scholar 

  21. Mena MA, Pardo B, Paino CL et al (1993) Levodopa toxicity in foetal rat midbrain neurons in culture: modulation by ascorbic acid. Neuroreport 4:438–440

    Article  PubMed  CAS  Google Scholar 

  22. Mena MA, Casarejos MJ, Carazo A et al (1996) Glia conditioned medium protects fetal rat midbrain neurones in culture from l-DOPA toxicity. Neuroreport 7:441–445

    Article  PubMed  CAS  Google Scholar 

  23. Datla KP, Blunt SB, Dexter DT (2001) Chronic l-DOPA administration is not toxic to the remaining dopaminergic nigrostriatal neurons, but instead may promote their functional recovery, in rats with partial 6-OHDA or FeCl(3) nigrostriatal lesions. Mov Disord 16:424–434

    Article  PubMed  CAS  Google Scholar 

  24. Melamed E, Offen D, Shirvan A et al (1998) Levodopa toxicity and apoptosis. Ann Neurol 44:S149–S154

    PubMed  CAS  Google Scholar 

  25. Murer MG, Dziewczapolski G, Menalled LB et al (1998) Chronic levodopa is not toxic for remaining dopamine neurons, but instead promotes their recovery, in rats with moderate nigrostriatal lesions. Ann Neurol 43:561–575

    Article  PubMed  CAS  Google Scholar 

  26. Walkinshaw G, Waters CM (1995) Induction of apoptosis in catecholaminergic PC12 cells by l-DOPA. Implications for the treatment of Parkinson’s disease. J Clin Invest 95:2458–2464

    PubMed  CAS  Google Scholar 

  27. Müller T, Woitalla D, Fowler B et al (2002) 3-OMD and homocysteine plasma levels in parkinsonian patients. J Neural Transm 109:175–179

    Article  PubMed  Google Scholar 

  28. Müller T, Woitalla D, Hauptmann B et al (2001) Decrease of methionine and S-adenosylmethionine and increase of homocysteine in treated patients with Parkinson’s disease. Neurosci Lett 308:54–56

    Article  PubMed  Google Scholar 

  29. Lee ES, Chen H, Soliman KF et al (2005) Effects of homocysteine on the dopaminergic system and behavior in rodents. Neurotoxicology 26:361–371

    Article  PubMed  CAS  Google Scholar 

  30. Spencer JP, Jenner A, Aruoma OI et al (1994) Intense oxidative DNA damage promoted by l-dopa and its metabolites. Implications for neurodegenerative disease. FEBS Lett 353:246–250

    Article  PubMed  CAS  Google Scholar 

  31. Martignoni E, Blandini F, Godi L et al (1999) Peripheral markers of oxidative stress in Parkinson’s disease. The role of l-DOPA. Free Radic Biol Med 27:428–437

    Article  CAS  Google Scholar 

  32. Blandini F, Martignoni E, Ricotti R et al (1999) Determination of hydroxyl free radical formation in human platelets using high-performance liquid chromatography with electrochemical detection. J Chromatogr B Biomed Sci Appl 732:213–220

    Article  PubMed  CAS  Google Scholar 

  33. Lee JJ, Kim YM, Yin SY et al (2003) Aggravation of l-DOPA-induced neurotoxicity by tetrahydropapaveroline in PC12 cells. Biochem Pharmacol 66:1787–1795

    Article  PubMed  CAS  Google Scholar 

  34. Lowry CA, Renner KJ, Moore FL (1996) Catecholamines and indoleamines in the central nervous system of a urodele amphibian: a microdissection study with emphasis on the distribution of epinephrine. Brain Behav Evol 48:70–93

    Article  PubMed  CAS  Google Scholar 

  35. Billard W, Ruperto V, Crosby G et al (1984) Characterization of the binding of [3H]SCH 23390, a selective D1 receptor antagonist ligand, in rat striatum. Life Sci 35:1885–1893

    Article  PubMed  CAS  Google Scholar 

  36. Woodgate A, MacGibbon G, Walton M et al (1999) The toxicity of 6-hydroxydopamine on PC12 and P19 cells. Brain Res Mol Brain Res 69:84–92

    Article  PubMed  CAS  Google Scholar 

  37. Fu W, Luo H, Parthasarathy S et al (1998) Catecholamines potentiate amyloid beta-peptide neurotoxicity: involvement of oxidative stress, mitochondrial dysfunction, and perturbed calcium homeostasis. Neurobiol Dis 5:229–243

    Article  PubMed  CAS  Google Scholar 

  38. Palmeira CM, Moreno AJ, Madeira VM et al (1996) Continuous monitoring of mitochondrial membrane potential in hepatocyte cell suspensions. J Pharmacol Toxicol Methods 35:35–43

    Article  PubMed  CAS  Google Scholar 

  39. Lee CS, Han JH, Jang YY et al (2002) Differential effect of catecholamines and MPP+ on membrane permeability in brain mitochondria and cell viability in PC12 cells. Neurochem Int 40:361–369

    Article  PubMed  CAS  Google Scholar 

  40. Reilly DK, Rivera-Calimlim L, Van Dyke D (1980) Catechol-O-methyltransferase activity: a determinant of levodopa response. Clin Pharmacol Ther 28:278–286

    Article  PubMed  CAS  Google Scholar 

  41. Rivera-Calimlim L, Tandon D, Anderson F et al (1977) The clinical picture and plasma levodopa metabolite profile of parkinsonian nonresponders. Treatment with levodopa and decarboxylase inhibitor. Arch Neurol 34:228–232

    PubMed  CAS  Google Scholar 

  42. Gomes P, Soares-da-Silva P (1999) Interaction between l-DOPA and 3-O-methyl-l-DOPA for transport in immortalised rat capillary cerebral endothelial cells. Neuropharmacology 38:1371–1380

    Article  PubMed  CAS  Google Scholar 

  43. Himori N, Tanaka Y, Kurasawa M et al (1994) 3-O-methyldopa attenuates the effects of Madopar on the haloperidol-induced cataleptic behavior and the locomotor activity in the mouse. Pharmacology 48:226–233

    Article  PubMed  CAS  Google Scholar 

  44. Greene LA, Rein G (1977) Release of (3H)norepinephrine from a clonal line of pheochromocytoma cells (PC12) by nicotinic cholinergic stimulation. Brain Res 138:521–528

    Article  PubMed  CAS  Google Scholar 

  45. Schubert D, Klier FG (1977) Storage and release of acetylcholine by a clonal cell line. Proc Natl Acad Sci USA 74:5184–5188

    Article  PubMed  CAS  Google Scholar 

  46. Rebois RV, Reynolds EE, Toll L et al (1980) Storage of dopamine and acetylcholine in granules of PC12, a clonal pheochromocytoma cell line. Biochemistry 19:1240–1248

    Article  PubMed  CAS  Google Scholar 

  47. Greene LA, Tischler AS (1976) Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc Natl Acad Sci USA 73:2424–2428

    Article  PubMed  CAS  Google Scholar 

  48. Basma AN, Morris EJ, Nicklas WJ, Geller HM (1995) l-dopa cytotoxicity to PC12 cells in culture is via its autoxidation. J Neurochem 64:825–832

    Article  PubMed  CAS  Google Scholar 

  49. Cobuzzi RJ, Neafsey EJ, Collins MA (1994) Differential cytotoxicities of N-methyl-beta-carbolinium analogues of MPP+ in PC12 cells: insights into potential neurotoxicants in Parkinson’s disease. J Neurochem 62:1503–1510

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

Support for this research project is provided by National Institutes of Health grants NIH/NS28432, RR03020, and GM08111.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eun-Sook Y. Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, ES.Y., Chen, H., King, J. et al. The Role of 3-O-Methyldopa in the Side Effects of l-dopa. Neurochem Res 33, 401–411 (2008). https://doi.org/10.1007/s11064-007-9442-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-007-9442-6

Keywords

Navigation