Skip to main content
Log in

Underlying Mechanism of Quercetin-induced Cell Death in Human Glioma Cells

  • Original paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

There has been considerable interest in recent years in the anti-tumor activities of flavonoids. Quercetin, a ubiquitous bioactive flavonoid, can inhibit proliferation and induce apoptosis in a variety of cancer cells. However, the precise molecular mechanism by which quercetin induces apoptosis in cancer cells is poorly understood. The present study was undertaken to examine the effect of quercetin on cell viability and to determine its underlying mechanism in human glioma cells. Quercetin resulted in loss of cell viability in a dose- and time-dependent manner and the decrease in cell viability was mainly attributed to cell death. Quercetin did not increase reactive oxygen species (ROS) generation and the quercetin-induced cell death was also not affected by antioxidants, suggesting that ROS generation is not involved in loss of cell viability. Western blot analysis showed that quercetin treatment caused rapid reduction in phosphorylation of extracellular signal-regulated kinase (ERK) and Akt. Transient transfection with constitutively active forms of MEK and Akt protected against the quercetin-induced loss of cell viability. Quercetin-induced depolarization of mitochondrial membrane potential. Caspase activity was stimulated by quercetin and caspase inhibitors prevented the quercetin-induced loss of cell viability. Quercetin resulted in a decrease in expression of survivin, antiapoptotic proteins. Taken together, these findings suggest that quercetin results in human glioma cell death through caspase-dependent mechanisms involving down-regulation of ERK, Akt, and survivin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ohgaki H, Kleihues P (2005) Population-based studies on incidence, survival rates, and genetic alterations in astrocytic and oligodendroglial gliomas. J Neuropathol Exp Neurol 64(6):479–489

    PubMed  CAS  Google Scholar 

  2. DeAngelis LM (2001) Brain tumors. N Engl J Med 344(2):114–123

    Article  PubMed  CAS  Google Scholar 

  3. Johnstone RW, Ruefli AA, Lowe SW (2002) Apoptosis: a link between cancer genetics and chemotherapy. Cell 108(2):153–164

    Article  PubMed  CAS  Google Scholar 

  4. Formica JV, Regelson W (1995) Review of the biology of quercetin and related bioflavonoids. Food Chem Toxicol 33(12):1061–1080

    Article  PubMed  CAS  Google Scholar 

  5. Schroeter H, Boyd C, Spencer JP, Williams RJ, Cadenas E, Rice-Evans C (2002) MAPK signaling in neurodegeneration: influences of flavonoids and of nitric oxide. Neurobiol Aging 23(5):861–880

    Article  PubMed  CAS  Google Scholar 

  6. Kanadaswami C, Lee LT, Lee PP, Hwang JJ, Ke FC, Huang YT, Lee MT (2005) The antitumor activities of flavonoids. In Vivo 19(5):895–909

    PubMed  CAS  Google Scholar 

  7. Choi JA, Kim JY, Lee JY, Kang CM, Kwon HJ, Yoo YD, Kim TW, Lee YS, Lee SJ (2001) Induction of cell cycle arrest and apoptosis in human breast cancer cells by quercetin. Int J Oncol 19(4):837–844

    PubMed  CAS  Google Scholar 

  8. Kuo SM (1996) Antiproliferative potency of structurally distinct dietary flavonoids on human colon cancer cells. Cancer Lett 110(1–2):41–48

    Article  PubMed  CAS  Google Scholar 

  9. Ong CS, Tran E, Nguyen TT, Ong CK, Lee SK, Lee JJ, Ng CP, Leong C, Huynh H (2004) Quercetin-induced growth inhibition and cell death in nasopharyngeal carcinoma cells are associated with increase in bad and hypophosphorylated retinoblastoma expressions. Oncol Rep 11(3):727–733

    PubMed  CAS  Google Scholar 

  10. Wei YQ, Zhao X, Kariya Y, Fukata H, Teshigawara K, Uchida A (1994) Induction of apoptosis by quercetin: involvement of heat shock protein. Cancer Res 54(18):4952–4957

    PubMed  CAS  Google Scholar 

  11. Wang IK, Lin-Shiau SY, Lin JK (1999) Induction of apoptosis by apigenin and related flavonoids through cytochrome c release and activation of caspase-9 and caspase-3 in leukaemia HL-60 cells. Eur J Cancer 35(10):1517–1525

    Article  PubMed  CAS  Google Scholar 

  12. Braganhol E, Zamin LL, Canedo AD, Horn F, Tamajusuku AS, Wink MR, Salbego C, Battastini AM (2006) Antiproliferative effect of quercetin in the human U138MG glioma cell line. Anticancer Drugs 17(6):663–671

    Article  PubMed  CAS  Google Scholar 

  13. Chen TJ, Jeng JY, Lin CW, Wu CY, Chen YC (2006) Quercetin inhibition of ROS-dependent and -independent apoptosis in rat glioma C6 cells. Toxicology 223(1–2):113–126

    Article  PubMed  CAS  Google Scholar 

  14. Ambrosini G, Adida C, Altieri DC (1997) A novel anti-apoptosis gene, survivin, expressed in cancer and lymphoma. Nat Med 3(8):917–921

    Article  PubMed  CAS  Google Scholar 

  15. Altieri DC, Marchisio PC (1999) Survivin apoptosis: an interloper between cell death and cell proliferation in cancer. Lab Invest 79(11):1327–1333

    PubMed  CAS  Google Scholar 

  16. Fong WG, Liston P, Rajcan-Separovic E, St Jean M, Craig C, Korneluk RG (2000) Expression and genetic analysis of XIAP-associated factor 1 (XAF1) in cancer cell lines. Genomics 70(1):113–122

    Article  PubMed  CAS  Google Scholar 

  17. Levkau B, Garton KJ, Ferri N, Kloke K, Nofer JR, Baba HA, Raines EW, Breithardt G (2001) xIAP induces cell-cycle arrest and activates nuclear factor-kappaB: new survival pathways disabled by caspase-mediated cleavage during apoptosis of human endothelial cells. Circ Res 88(3):282–290

    PubMed  CAS  Google Scholar 

  18. Fukuda S, Pelus LM (2006) Survivin, a cancer target with an emerging role in normal adult tissues. Mol Cancer Ther 5(5):1087–1098

    Article  PubMed  CAS  Google Scholar 

  19. Tamm I, Kornblau SM, Segall H, Krajewski S, Welsh K, Kitada S, Scudiero DA, Tudor G, Qui YH, Monks A, Andreeff M, Reed JC (2000) Expression and prognostic significance of IAP-family genes in human cancers and myeloid leukemias. Clin Cancer Res 6(5):1796–1803

    PubMed  CAS  Google Scholar 

  20. Chakravarti A, Noll E, Black PM, Finkelstein DF, Finkelstein DM, Dyson NJ, Loeffler JS (2002) Quantitatively determined survivin expression levels are of prognostic value in human gliomas. J Clin Oncol 20(4):1063–1068

    Article  PubMed  CAS  Google Scholar 

  21. Kajiwara Y, Yamasaki F, Hama S, Yahara K, Yoshioka H, Sugiyama K, Arita K, Kurisu K (2003) Expression of survivin in astrocytic tumors: correlation with malignant grade and prognosis. Cancer 97(4):1077–1083

    Article  PubMed  Google Scholar 

  22. Denizot F, Lang R (1986) Rapid colorimetric assay for cell growth and survival. Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J Immunol Methods 89(2):271–277

    Article  PubMed  CAS  Google Scholar 

  23. Pastorino JG, Chen ST, Tafani M, Snyder JW, Farber JL (1998) The overexpression of Bax produces cell death upon induction of the mitochondrial permeability transition. J Biol Chem 273(13):7770–7775

    Article  PubMed  CAS  Google Scholar 

  24. Cho WH, Choi CH, Park JY, Kang SK, Kim YK (2006) 15-Deoxy-Δ2,14-prostaglandin J2 (15d-PGJ2) inhibits proliferation and induces cell death in A172 human glioma cells. Neurochem Res 31:1247–1254

    Article  PubMed  CAS  Google Scholar 

  25. Xia Z, Dickens M, Raingeaud J, Davis RJ, Greenberg ME (1995) Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science 270(5240):1326–1331

    Article  PubMed  CAS  Google Scholar 

  26. Cobb MH (1999) MAP kinase pathways. Prog Biophys Mol Biol 71(3–4):479–500

    Article  PubMed  CAS  Google Scholar 

  27. Coffer PJ, Jin J, Woodgett JR (1998) Protein kinase B (c-Akt): a multifunctional mediator of phosphatidylinositol 3-kinase activation. Biochem J 335(Pt 1):1–13

    PubMed  CAS  Google Scholar 

  28. Cohen GM (1997) Caspases: the executioners of apoptosis. Biochem J 326:1–16

    PubMed  CAS  Google Scholar 

  29. Agullo G, Gamet-Payrastre L, Manenti S, Viala C, Remesy C, Chap H, Payrastre B (1997) Relationship between flavonoid structure and inhibition of phosphatidylinositol 3-kinase: a comparison with tyrosine kinase and protein kinase C inhibition. Biochem Pharmacol 53(11):1649–1657

    Article  PubMed  CAS  Google Scholar 

  30. Hagiwara M, Inoue S, Tanaka T, Nunoki K, Ito M, Hidaka H (1988) Differential effects of flavonoids as inhibitors of tyrosine protein kinases and serine/threonine protein kinases. Biochem Pharmacol 37(15):2987–2992

    Article  PubMed  CAS  Google Scholar 

  31. Spencer JP, Rice-Evans C, Williams RJ (2003) Modulation of pro-survival Akt/protein kinase B and ERK1/2 signaling cascades by quercetin and its in vivo metabolites underlie their action on neuronal viability. J Biol Chem 278(37):34783–34793

    Article  PubMed  CAS  Google Scholar 

  32. Notoya M, Tsukamoto Y, Nishimura H, Woo JT, Nagai K, Lee IS, Hagiwara H (2004) Quercetin, a flavonoid, inhibits the proliferation, differentiation, and mineralization of osteoblasts in vitro. Eur J Pharmacol 485(1–3):89–96

    Article  PubMed  CAS  Google Scholar 

  33. Prouillet C, Maziere JC, Maziere C, Wattel A, Brazier M, Kamel S (2004) Stimulatory effect of naturally occurring flavonols quercetin and kaempferol on alkaline phosphatase activity in MG-63 human osteoblasts through ERK and estrogen receptor pathway. Biochem Pharmacol 67(7):1307–1313

    Article  PubMed  CAS  Google Scholar 

  34. Miura YH, Tomita I, Watanabe T, Hirayama T, Fukui S (1998) Active oxygens generation by flavonoids. Biol Pharm Bull 21(2):93–96

    PubMed  CAS  Google Scholar 

  35. Chen YC, Shen SC, Chow JM, Ko CH, Tseng SW (2004) Flavone inhibition of tumor growth via apoptosis in vitro and in vivo. Int J Oncol 25(3):661–670

    PubMed  CAS  Google Scholar 

  36. Shen SC, Chen YC, Hsu FL, Lee WR (2003) Differential apoptosis-inducing effect of quercetin and its glycosides in human promyeloleukemic HL-60 cells by alternative activation of the caspase 3 cascade. J Cell Biochem 89(5):1044–1055

    Article  PubMed  CAS  Google Scholar 

  37. Bhaskara VK, Sundaram C, Babu PP (2006) pERK, pAkt and pBad: a possible role in cell proliferation and sustained cellular survival during tumorigenesis and tumor progression in ENU induced transplacental glioma rat model. Neurochem Res 31(9):1163–1170

    Article  PubMed  CAS  Google Scholar 

  38. Jacques-Silva MC, Bernardi A, Rodnight R, Lenz G (2004) ERK, PKC and PI3K/Akt pathways mediate extracellular ATP and adenosine-induced proliferation of U138-MG human glioma cell line. Oncology 67(5–6):450–459

    Article  PubMed  CAS  Google Scholar 

  39. Wang L, Liu F, Adamo ML (2001) Cyclic AMP inhibits extracellular signal-regulated kinase and phosphatidylinositol 3-kinase/Akt pathways by inhibiting Rap1. J Biol Chem 276(40):37242–37249

    Article  PubMed  CAS  Google Scholar 

  40. Moon SK, Cho GO, Jung SY, Gal SW, Kwon TK, Lee YC, Madamanchi NR, Kim CH (2003) Quercetin exerts multiple inhibitory effects on vascular smooth muscle cells: role of ERK1/2, cell-cycle regulation, and matrix metalloproteinase-9. Biochem Biophys Res Commun 301(4):1069–1078

    Article  PubMed  CAS  Google Scholar 

  41. Nguyen TT, Tran E, Nguyen TH, Do PT, Huynh TH, Huynh H (2004) The role of activated MEK-ERK pathway in quercetin-induced growth inhibition and apoptosis in A549 lung cancer cells. Carcinogenesis 25(5):647–659

    Article  PubMed  CAS  Google Scholar 

  42. Walker EH, Pacold ME, Perisic O, Stephens L, Hawkins PT, Wymann MP, Williams RL (2000) Structural determinants of phosphoinositide 3-kinase inhibition by wortmannin, LY294002, quercetin, myricetin, and staurosporine. Mol Cell 6(4):909–919

    Article  PubMed  CAS  Google Scholar 

  43. Granado-Serrano AB, Martin MA, Bravo L, Goya L, Ramos S (2006) Quercetin induces apoptosis via caspase activation, regulation of Bcl-2, and inhibition of PI-3-Kinase/Akt and ERK pathways in a human hepatoma cell line (HepG2). J Nutr 136(11):2715–2721

    PubMed  CAS  Google Scholar 

  44. Pastorino JG, Snyder JW, Serroni A, Hoek JB, Farber JL (1993) Cyclosporin and carnitine prevent the anoxic death of cultured hepatocytes by inhibiting the mitochondrial permeability transition. J Biol Chem 268(19):13791–13798

    PubMed  CAS  Google Scholar 

  45. Kroemer G, Dallaporta B, Resche-Rigon M (1998) The mitochondrial death/life regulator in apoptosis and necrosis. Annu Rev Physiol 60:619–642

    Article  PubMed  CAS  Google Scholar 

  46. Tatton WG, Olanow CW (1999) Apoptosis in neurodegenerative diseases: the role of mitochondria. Biochim Biophys Acta 1410(2):195–213

    Article  PubMed  CAS  Google Scholar 

  47. Yang JH, Hsia TC, Kuo HM, Chao PD, Chou CC, Wei YH, Chung JG (2006) Inhibition of lung cancer cell growth by quercetin glucuronides via G2/M arrest and induction of apoptosis. Drug Metab Dispos 34(2):296–304

    Article  PubMed  CAS  Google Scholar 

  48. Russo M, Palumbo R, Tedesco I, Mazzarella G, Russo P, Iacomino G, Russo GL (1999) Quercetin and anti-CD95(Fas/Apo1) enhance apoptosis in HPB-ALL cell line. FEBS Lett 462(3):322–328

    Article  PubMed  CAS  Google Scholar 

  49. Ni T, Li W, Zou F (2005) The ubiquitin ligase ability of IAPs regulates apoptosis. IUBMB Life 57(12):779–785

    Article  PubMed  CAS  Google Scholar 

  50. Liston P, Young SS, Mackenzie AE, Korneluk RG (1997) Life and death decisions: the role of the IAPs in modulating programmed cell death. Apoptosis 2(5):423–441

    Article  PubMed  CAS  Google Scholar 

  51. McLaughlin N, Annabi B, Bouzeghrane M, Temme A, Bahary JP, Moumdjian R, Beliveau R (2006) The Survivin-mediated radioresistant phenotype of glioblastomas is regulated by RhoA and inhibited by the green tea polyphenol (-)-epigallocatechin-3-gallate. Brain Res 1071(1):1–9

    Article  PubMed  CAS  Google Scholar 

  52. Altieri DC (2001) The molecular basis and potential role of survivin in cancer diagnosis and therapy. Trends Mol Med 7(12):542–547

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the MRC program of MOST/KOSEF (R13-2005–009) and the 21st Century Frontier/Stem Cell Research Committee (SC3130) in Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang Hwa Choi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, E.J., Choi, C.H., Park, J.Y. et al. Underlying Mechanism of Quercetin-induced Cell Death in Human Glioma Cells. Neurochem Res 33, 971–979 (2008). https://doi.org/10.1007/s11064-007-9416-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-007-9416-8

Keywords

Navigation