Skip to main content

Advertisement

Log in

Increased Membrane/Nuclear Translocation and Phosphorylation of p90 KD Ribosomal S6 Kinase in the Brain of Hypoxic Preconditioned Mice

  • Original paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Our previous studies have demonstrated that hypoxic precondition (HPC) increased membrane translocation of protein kinase C isoforms and decreased phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2) in the brain of mice. The goal of this study was to determine the involvement of p90 KD ribosomal S6 kinase (RSK) in cerebral HPC of mice. Using Western-blot analysis, we found that the levels of membrane/nuclear translocation, but not protein expression of RSK increased significantly in the frontal cortex and hippocampus of HPC mice. In addition, we found that the phosphorylation levels of RSK at the Ser227 site (a PDK1 phosphorylation site), but not at the Thr359/Ser363 sites (ERK1/2 phosphorylated sites) increased significantly in the brain of HPC mice. Similar results were confirmed by an immunostaining study of total RSK and phospho-Ser227 RSK. To further define the cellular populations to express phospho-Ser227 RSK, we found that the expression of phospho-Ser227 RSK co-localized with neurogranin, a neuron-specific marker, in cortex and hippocampus of HPC mice by using double-labeled immunofluorescent staining method. These results suggest that increased RSK membrane/nuclear translocation and PDK1 mediated neuron-specific phosphorylation of RSK at Ser227 might be involved in the development of cerebral HPC of mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Murry CE, Jennings RB, Reimer KA (1986) Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 74:1124–1136

    PubMed  CAS  Google Scholar 

  2. Kitagawa K, Matsumoto M, Tagaya M, Hata R, Ueda H, Niinobe M, Handa N, Fukunaga R, Kimura K, Mikoshiba K (1990) ‘Ischemic tolerance’ phenomenon found in the brain. Brain Res 528:21–24

    Article  PubMed  CAS  Google Scholar 

  3. Chaudary N, Naydenova Z, Shuralyova I, Coe IR (2004) The adenosine transporter, mENT1, is a target for adenosine receptor signaling and protein kinase Cepsilon in hypoxic and pharmacological preconditioning in the mouse cardiomyocyte cell line, HL-1. J Pharmacol Exp Ther 310:1190–1198

    Article  PubMed  CAS  Google Scholar 

  4. Hassouna A, Loubani M, Matata BM, Fowler A, Standen NB, Galinanes M (2006) Mitochondrial dysfunction as the cause of the failure to precondition the diabetic human myocardium. Cardiovasc Res 69:450–458

    Article  PubMed  CAS  Google Scholar 

  5. Lynch FM, Austin C, Heagerty AM, Izzard AS (2006) Adenosine and hypoxic dilation of rat coronary small arteries: roles of the ATP-sensitive potassium channel, endothelium, and nitric oxide. Am J Physiol Heart Circ Physiol 290:H1145–H1150

    Article  PubMed  CAS  Google Scholar 

  6. Kang HJ, Kim HJ, Rih JK, Mattson TL, Kim KW, Cho CH, Isaacs JS, Bae I (2006) BRCA1 plays a role in the hypoxic response by regulating HIF-1alpha stability and by modulating vascular endothelial growth factor expression. J Biol Chem 281:13047–13056

    Article  PubMed  CAS  Google Scholar 

  7. Chang HM, Liao WC, Lue JH, Wen CY, Shieh JY (2003) Upregulation of NMDA receptor and neuronal NADPH-d/NOS expression in the nodose ganglion of acute hypoxic rats. J Chem Neuroanat 25:137–147

    Article  PubMed  CAS  Google Scholar 

  8. Tutunculer F, Eskiocak S, Basaran UN, Ekuklu G, Ayvaz S, Vatansever U (2005) The protective role of melatonin in experimental hypoxic brain damage. Pediatr Int 47:434–439

    Article  PubMed  CAS  Google Scholar 

  9. Li J, Niu C, Han S, Zu P, Li H, Xu Q, Fang L (2005) Identification of protein kinase C isoforms involved in cerebral hypoxic preconditioning of mice. Brain Res 1060:62–72

    PubMed  CAS  Google Scholar 

  10. Lu GW, Liu HY (2001) Downregulation of nitric oxide in the brain of mice during their hypoxic preconditioning. J Appl Physiol 91:1193–1198

    PubMed  CAS  Google Scholar 

  11. Niu C, Li J, Cui X, Han S, Zu P, Li H, Xu Q (2005) Changes in cPKC isoform-specific membrane translocation and protein expression in the brain of hypoxic preconditioned mice. Neurosci Lett 384:1–6

    Article  PubMed  CAS  Google Scholar 

  12. Li J, Yang C, Han S, Zu P, Wu J, Xu Q, Fang L (2006) Increased phosphorylation of neurogranin in the brain of hypoxic preconditioned mice. Neurosci Lett 391:150–153

    Article  PubMed  CAS  Google Scholar 

  13. Gao Y, Gao G, Long C, Han S, Zu P, Fang L, Li J (2006) Enhanced phosphorylation of cyclic AMP response element binding protein in the brain of mice following repetitive hypoxic exposure. Biochem Biophys Res Commun 340:661–667

    Article  PubMed  CAS  Google Scholar 

  14. Long C, Gao Y, Gao G, Han S, Zu P, Fang L, Li J (2006) Decreased phosphorylation and protein expression of ERK1/2 in the brain of hypoxic preconditioned mice. Neurosci Lett 397:307–312

    Article  PubMed  CAS  Google Scholar 

  15. Frodin M, Gammeltoft S (1999) Role and regulation of 90 kDa ribosomal S6 kinase (RSK) in signal transduction. Mol Cell Endocrinol 151:65–77

    Article  PubMed  CAS  Google Scholar 

  16. Jensen CJ, Buch MB, Krag TO, Hemmings BA, Gammeltoft S, Frodin M (1999) 90-kDa ribosomal S6 kinase is phosphorylated and activated by 3-phosphoinositide-dependent protein kinase-1. J Biol Chem 274:27168–27176

    Article  PubMed  CAS  Google Scholar 

  17. Richards SA, Dreisbach VC, Murphy LO, Blenis J (2001) Characterization of regulatory events associated with membrane targeting of p90 ribosomal S6 kinase 1. Mol Cell Biol 21:7470–7480

    Article  PubMed  CAS  Google Scholar 

  18. Zhang Y, Zhai Q, Luo Y, Dorf ME (2002) RANTES-mediated chemokine transcription in astrocytes involves activation and translocation of p90 ribosomal S6 protein kinase (RSK). J Biol Chem 277:19042–19048

    Article  PubMed  CAS  Google Scholar 

  19. Panta GR, Kaur S, Cavin LG, Cortes ML, Mercurio F, Lothstein L, Sweatman TW, Israel M, Arsura M (2004) ATM and the catalytic subunit of DNA-dependent protein kinase activate NF-kappaB through a common MEK/extracellular signal-regulated kinase/p90(rsk) signaling pathway in response to distinct forms of DNA damage. Mol Cell Biol 24:1823–1835

    Article  PubMed  CAS  Google Scholar 

  20. Toledo-Pereyra LH, Lopez-Neblina F, Reuben JS, Toledo AH, Ward PA (2004) Selectin inhibition modulates Akt/MAPK signaling and chemokine expression after liver ischemia-reperfusion. J Invest Surg 17:303–313

    Article  PubMed  Google Scholar 

  21. Yang TT, Xiong Q, Graef IA, Crabtree GR, Chow CW (2005) Recruitment of the extracellular signal-regulated kinase/ribosomal S6 kinase signaling pathway to the NFATc4 transcription activation complex. Mol Cell Biol 25:907–920

    Article  PubMed  CAS  Google Scholar 

  22. Merienne K, Jacquot S, Zeniou M, Pannetier S, Sassone-Corsi P, Hanauer A (2000) Activation of RSK by UV-light: phosphorylation dynamics and involvement of the MAPK pathway. Oncogene 19:4221–4229

    Article  PubMed  CAS  Google Scholar 

  23. Shah BH, Farshori MP, Jambusaria A, Catt KJ (2003) Roles of Src and epidermal growth factor receptor transactivation in transient and sustained ERK1/2 responses to gonadotropin-releasing hormone receptor activation. J Biol Chem 278:19118–19126

    Article  PubMed  CAS  Google Scholar 

  24. Butcher GQ, Lee B, Hsieh F, Obrietan K (2004) Light- and clock-dependent regulation of ribosomal S6 kinase activity in the suprachiasmatic nucleus. Eur J Neurosci 19:907–915

    Article  PubMed  Google Scholar 

  25. Anjum R, Roux PP, Ballif BA, Gygi SP, Blenis J (2005) The tumor suppressor DAP kinase is a target of RSK-mediated survival signaling. Curr Biol 15:1762–1767

    Article  PubMed  CAS  Google Scholar 

  26. Mori M, Hara M, Tachibana K, Kishimoto T (2006) p90Rsk is required for G1 phase arrest in unfertilized starfish eggs. Development 133:1823–1830

    Article  PubMed  CAS  Google Scholar 

  27. Rosseland CM, Wierod L, Oksvold MP, Werner H, Ostvold AC, Thoresen GH, Paulsen RE, Huitfeldt HS, Skarpen E (2005) Cytoplasmic retention of peroxide-activated ERK provides survival in primary cultures of rat hepatocytes. Hepatology 42:200–207

    Article  PubMed  CAS  Google Scholar 

  28. Takeishi Y, Abe J, Lee JD, Kawakatsu H, Walsh RA, Berk BC (1999) Differential regulation of p90 ribosomal S6 kinase and big mitogen-activated protein kinase 1 by ischemia/reperfusion and oxidative stress in perfused guinea pig hearts. Circ Res 85:1164–1172

    PubMed  CAS  Google Scholar 

  29. Li J, Huang FL, Huang KP (2001) Glutathiolation of proteins by glutathione disulfide S-oxide derived from S-nitrosoglutathione. Modifications of rat brain neurogranin/RC3 and neuromodulin/GAP-43. J Biol Chem 276:3098–3105

    Article  PubMed  CAS  Google Scholar 

  30. Li J, Pak JH, Huang FL, Huang KP (1999) N-methyl-d-aspartate induces neurogranin/RC3 oxidation in rat brain slices. J Biol Chem 274:1294–1300

    Article  PubMed  CAS  Google Scholar 

  31. Nishio S, Yunoki M, Chen ZF, Anzivino MJ, Lee KS (2000) Ischemic tolerance in the rat neocortex following hypothermic preconditioning. J Neurosurg 93:845–851

    Article  PubMed  CAS  Google Scholar 

  32. Prass K, Wiegand F, Schumann P, Ahrens M, Kapinya K, Harms C, Liao W, Trendelenburg G, Gertz K, Moskowitz MA, Knapp F, Victorov IV, Megow D, Dirnagl U (2000) Hyperbaric oxygenation induced tolerance against focal cerebral ischemia in mice is strain dependent. Brain Res 871:146–150

    Article  PubMed  CAS  Google Scholar 

  33. Wiegand F, Liao W, Busch C, Castell S, Knapp F, Lindauer U, Megow D, Meisel A, Redetzky A, Ruscher K, Trendelenburg G, Victorov I, Riepe M, Diener HC, Dirnagl U (1999) Respiratory chain inhibition induces tolerance to focal cerebral ischemia. J Cereb Blood Flow Metab 19:1229–1237

    Article  PubMed  CAS  Google Scholar 

  34. Kobayashi S, Harris VA, Welsh FA (1995) Spreading depression induces tolerance of cortical neurons to ischemia in rat brain. J Cereb Blood Flow Metab 15:721–727

    PubMed  CAS  Google Scholar 

  35. Nawashiro H, Tasaki K, Ruetzler CA, Hallenbeck JM (1997) TNF-alpha pretreatment induces protective effects against focal cerebral ischemia in mice. J Cereb Blood Flow Metab 17:483–490

    Article  PubMed  CAS  Google Scholar 

  36. Nguyen TV, Yao M, Pike CJ (2005) Androgens activate mitogen-activated protein kinase signaling: role in neuroprotection. J Neurochem 94:1639–1651

    Article  PubMed  CAS  Google Scholar 

  37. Roux PP, Richards SA, Blenis J (2003) Phosphorylation of p90 ribosomal S6 kinase (RSK) regulates extracellular signal-regulated kinase docking and RSK activity. Mol Cell Biol 23:4796–4804

    Article  PubMed  CAS  Google Scholar 

  38. Watson K, Fan GH (2005) Macrophage inflammatory protein 2 inhibits beta-amyloid peptide (1–42)-mediated hippocampal neuronal apoptosis through activation of mitogen-activated protein kinase and phosphatidylinositol 3-kinase signaling pathways. Mol Pharmacol 67:757–765

    Article  PubMed  CAS  Google Scholar 

  39. Cavet ME, Lehoux S, Berk BC (2003) 14-3-3beta is a p90 ribosomal S6 kinase (RSK) isoform 1-binding protein that negatively regulates RSK kinase activity. J Biol Chem 278:18376–18383

    Article  PubMed  CAS  Google Scholar 

  40. Abidi F, Hall BD, Cadle RG, Feldman GL, Lubs HA, Ouzts LV, Arena JF, Stevenson RE, Schwartz CE (1999) X-linked mental retardation with variable stature, head circumference, and testicular volume linked to Xq12-q21. Am J Med Genet 85:223–229

    Article  PubMed  CAS  Google Scholar 

  41. Abidi F, Jacquot S, Lassiter C, Trivier E, Hanauer A, Schwartz CE (1999) Novel mutations in Rsk-2, the gene for Coffin-Lowry syndrome (CLS). Eur J Hum Genet 7:20–26

    Article  PubMed  CAS  Google Scholar 

  42. Smith JA, Poteet-Smith CE, Xu Y, Errington TM, Hecht SM, Lannigan DA (2005) Identification of the first specific inhibitor of p90 ribosomal S6 kinase (RSK) reveals an unexpected role for RSK in cancer cell proliferation. Cancer Res 65:1027–1034

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the following grants: National Natural Science Foundation of China (30470650 and 30670782), Beijing Natural Science Foundation (07E0029), China 973 Program (2006CB504100), and NIH DE 15814. The authors thank Steve Schuenke for editorial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junfa Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qi, Z., Bu, X., Huang, P. et al. Increased Membrane/Nuclear Translocation and Phosphorylation of p90 KD Ribosomal S6 Kinase in the Brain of Hypoxic Preconditioned Mice. Neurochem Res 32, 1450–1459 (2007). https://doi.org/10.1007/s11064-007-9331-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-007-9331-z

Keywords

Navigation