Skip to main content
Log in

Effect of Electroacupuncture on Neurotrophin Expression in Cat Spinal Cord after Partial Dorsal Rhizotomy

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Neuroplasticity of the spinal cord following electroacupuncture (EA) has been demonstrated although little is known about the possible underlying mechanism. This study evaluated the effect of EA on expression of neurotrophins in the lamina II of the spinal cord, in cats subjected to dorsal rhizotomy. Cats received bilateral removal of L1–L5 and L7–S2 dorsal root ganglia (DRG, L6 DRG spared) and unilateral EA. They were sacrificed 7 days after surgery, and the L6 spinal segment removed and processed by immunohistochemistry and in situ hybridization histochemistry, to demonstrate the expression of neurotrophins. Significantly greater numbers of nerve growth factor (NGF) and neurotrophin-3 (NT-3) positive neurons, brain-derived neurotrophic factor (BDNF) immunoreactive varicosities and NT-3 positive neurons and glial cells were observed in lamina II on the acupunctured (left) side, compared to the non-acupunctured, contralateral side. Greater number of neurons expressing NGF mRNA was also observed on the acupunctured side. No signal for mRNA to BDNF and NT-3 was detected. The above findings demonstrate that EA can increase the expression of endogenous NGF at both the mRNA and protein level, and BDNF and NT-3 at the protein level. It is postulated that EA may promote the plasticity of the spinal cord by inducing increased expression of neurotrophins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Airaksinen MS, Meyer M (1996) Most classes of dorsal root ganglion neurons are severely depleted but not absent in mice lacking neurotrophin-3. Neuroscience 73:907–911

    Article  PubMed  CAS  Google Scholar 

  2. Arimatsu Y, Miyamoto M (1991) Survival-promoting effect of NGF on in vitro septohippocampal neurons with cholinergic and GABA-ergic phenotypes. Brain Res Dev Brain Res 58:189–201

    Article  PubMed  CAS  Google Scholar 

  3. Barde YA (1989) Trophic factors and neuronal survival. Neuron 2:1525–1534

    Article  PubMed  CAS  Google Scholar 

  4. Barde YA (1990) The nerve growth factor family. Prog Growth Factor Res 2:234–248

    Article  Google Scholar 

  5. Cattaneo E, Mckay R (1990) Proliferation and differentiation of neuronal stem cells regulated by nerve growth factor. Nature 347:762–765

    Article  PubMed  CAS  Google Scholar 

  6. Davies AM (1988) Role of neurotrophic factors in development. Trends Genet 4:139–143

    Article  PubMed  CAS  Google Scholar 

  7. Deng YS, Zhong JH, Zhou XF (2000) Effects of endogenous neurotrophins on sympathetic sprouting in the dorsal root ganglia and allodynia following spinal nerve injury. Exp Neurol 164:344–350

    Article  PubMed  CAS  Google Scholar 

  8. Dong HX, Wu LF (1994) Effect of acupuncture on plasticity of SP, CCK, L-ENK and 5-HT nerve fibers in spinal lamina II of cats with partial dorsal rhizotomy—a quantitative immunohistochemical analysis. Chin J Histochem Cytochem 3:314–320

    Google Scholar 

  9. Dong HX, Wu LF, Bao TR (1994) The effect of acupuncture on plasticity in lamina of cat spinal cord after partial deafferentation-a quantitative electron microscopic study. (Chin) J Neuroanat 10:6–10

    Google Scholar 

  10. Ernfors P, Ebendal T, Olson L et al (1989) A cell line producing recombinant nerve growth factor evokes growth responses in intrinsic and grafted central cholinergic neurons. Proc Natl Acad Sci USA 86:4756–4760

    Article  PubMed  CAS  Google Scholar 

  11. Farinas I, Yoshida CK, Backus C et al (1996) Lack of neurotrophin-3 results in death of spinal sensory neurons and premature differentiation of their precursors. Neuron 17:1065–1078

    Article  PubMed  CAS  Google Scholar 

  12. Finklestain SP (1988) Increased basic fibroblast growth factor (bFGF) immunoreactivity and levels focal brain wounds. Brain Res 460:253–259

    Article  Google Scholar 

  13. Friedman B, Kleinfeld D, Ip NY et al. (1995) BDNF and NT-4/5 exert neurotrophic influences on injured adult spinal motor neurons. J Neurosci 15:1044–1056

    PubMed  CAS  Google Scholar 

  14. Greene LA, Shooter EM (1980) The nerve growth factor: biochemistry, synthesis, and mechanism of action. Annu Rev Neurosci 3:353–402

    Article  PubMed  CAS  Google Scholar 

  15. Gundersen RW, Barrett JN (1979) Neuronal chemotaxis: chick dorsal-root axons turn toward high concentrations of nerve growth factor. Science 206:1079–1080

    Article  PubMed  CAS  Google Scholar 

  16. Hartikka I, Hefti F (1988) Development of septal cholinergic neurons in culture: plating density and glial cells modulate effects of NGF on survival, fiber growth, and expression of transmitter-specific enzymes. J Neurosci 8:2967–2985

    PubMed  CAS  Google Scholar 

  17. Houle JD, Ziegler MK (1994) Bridging a complete transection lesion of adult rat spinal cord with growth factor-treated nitrocellulose implants. J Neural Transplant Plast 5:115–124

    Article  PubMed  CAS  Google Scholar 

  18. Hulsebosch CE, Coggeshall RE, Perez-Polo JR (1984) Effects of nerve growth factor and its antibodies on sprouting of sensory axons following spinal cord hemisection. Brain Res 323:1–10

    Article  PubMed  CAS  Google Scholar 

  19. Ikeda O, Murakami M, Ino H et al (2001) Acute up-regulation of brain-derived neurotrophic factor expression resulting from experimentally induced injury in the rat spinal cord. Acta Neuropathol 102:239–245

    PubMed  CAS  Google Scholar 

  20. Ikeda O, Murakami M, Ino H et al (2002) Effects of brain-derived neurotrophic factor (BDNF) on compression-induced spinal cord injury: BDNF attenuates down-regulation of superoxide dismutase expression and promotes up-regulation of myelin basic protein expression. J Neuropathol Exp Neurol 61:142–153

    PubMed  CAS  Google Scholar 

  21. Jiang ZG, Smith RA (1993) Effects of nerve growth factor on the survival of primary cultured adult and aged mouse sensory neurons. J Neurosci Res 35:29–37

    Article  PubMed  CAS  Google Scholar 

  22. Johnson RA, Okragly AJ, Haak-Frendscho M et al (2000) Cervical dorsal rhizotomy increases brain-derived neurotrophic factor and neurotrophin-3 expression in the ventral spinal cord. J Neurosci 20:RC77

    PubMed  CAS  Google Scholar 

  23. Jongsma WH, Danielsen N, Johnston JM et al (2001) Exogenous NT-3 and NGF differentially modulate PACAP expression in adult sensory neurons, suggesting distinct roles in injury and inflammation. Eur J Neurosci 14:267–282

    Article  Google Scholar 

  24. Koda M, Murakami M, Ino H et al (2002) Brain-derived neurotrophic factor suppresses delayed apoptosis of oligodendrocytes after spinal cord injury in rats. J Neurotrauma 19:777–785

    Article  PubMed  Google Scholar 

  25. Krenz NR, Weaver LC (2000) Nerve growth factor in glia and inflammatory cells of the injured rat spinal cord. J Neurochem 74:730–739

    Article  PubMed  CAS  Google Scholar 

  26. Lewin GR, Barde YA (1996) Physiology of neurotrophins. Annu Rev Neurosci 19:289–317

    Article  PubMed  CAS  Google Scholar 

  27. Liebl DJ, Tessarollo L, Palko ME et al (1997) Absence of sensory neurons before target innervation in brain-derived neurotrophic factor-, neurotrophin 3-, and TrkC-deficient embryonic mice. J Neurosci 17:9113–9121

    PubMed  CAS  Google Scholar 

  28. Lindsay RM, Wiegand SJ, Altar CA et al (1994) Neurotrophic factors: from molecule to man. Trends Neurosci 17:182–190

    Article  PubMed  CAS  Google Scholar 

  29. Lo DC (1995) Neurotrophic factors and synaptic plasticity. Neuron 15:979–981

    Article  PubMed  CAS  Google Scholar 

  30. Lohof AM, Ip NY (1993) Potentiation of developing neuronmuscular synapses by the neurotrophins NT-3 and BDNF. Nature 363:350–353

    Article  PubMed  CAS  Google Scholar 

  31. Long SL, Li YM, Yuan Y et al (2005) Partial dorsal root rhizotomy increases the anterograde transportation of neurotrophic factors in primary sensory neuron. J Sichuan Univ (Med Sci Edi) 36:325–327

    Google Scholar 

  32. Maisonpierre PC, Belluscio L, Squinto S et al (1990) Neurotrophin-3: a neurotrophic factor related to NGF and BDNF. Science 247:1446–1451

    Article  PubMed  CAS  Google Scholar 

  33. McTigue DM, Horner PJ, Stokes BT et al (1998) Neurotrophin-3 and brain-derived neurotrophic factor induce oligodendrocyte proliferation and myelination of regenerating axons in the contused adult rat spinal cord. J Neurosci 18:5354–5365

    PubMed  CAS  Google Scholar 

  34. Mendell LM, Munson JB, Arvanian VL (2001) Neurotrophins and synaptic plasticity in the mammalian spinal cord. J Physiol 533:91–97

    Article  PubMed  CAS  Google Scholar 

  35. Namiki J, Kojima A, Tator CH (2000) Effect of brain-derived neurotrophic factor, nerve growth factor, and neurotrophin-3 on functional recovery and regeneration after spinal cord injury in adult rats. J Neurotrauma 17:1219–1231

    Article  PubMed  CAS  Google Scholar 

  36. Novikova LN, Novikov LN, Kellerth JO (2002) Differential effects of neurotrophins on neuronal survival and axonal regeneration after spinal cord injury in adult rats. J Comp Neurol 452:255–263

    Article  PubMed  CAS  Google Scholar 

  37. Oakley RA, Lefcort FB, Clary DO et al (1997) Neurotrophin-3 promotes the differentiation of muscle spindle afferents in the absence of peripheral targets. J Neurosci 17:4262–4274

    PubMed  CAS  Google Scholar 

  38. Oudega M, Hagg T (1996) Nerve growth factor promotes regeneration of sensory axons into adult rat spinal cord. Exp Neurol 140:218–219

    Article  PubMed  CAS  Google Scholar 

  39. Polistina DC, Murray M, Goldberger ME (1990) Plasticity of dorsal root descending serotoninergic projections after partial deafferentation of adult rat spinal cord. J Comp Neurol 299:349–363

    Article  PubMed  CAS  Google Scholar 

  40. Ringstedt T, Kucera J, Lendahl U, Ernfors P, Ibanez CF (1997) Limb proprioceptive deficits without neuronal loss in transgenic mice overexpressing neurotrophin-3 in the developing nervous system. Development 124:2603–2613

    PubMed  CAS  Google Scholar 

  41. Schnell L, Schneider R, Kolbeck R et al (1994) Neurotrophin-3 enhances sprouting of corticospinal tract during development and after adult spinal cord lesion. Nature 367:170–173

    Article  PubMed  CAS  Google Scholar 

  42. Seckel BR, Chiu TH, Nyilas E et al (1984) Nerve regeneration through biodegradable nerve guides: regulation by the target organ. Plast Reconstr Surg 74:173–181

    Article  PubMed  CAS  Google Scholar 

  43. Snider WD (1994) Functions of the neurotrophins during nervous system development: what the knock outs are teaching us. Cell 77:627–638

    Article  PubMed  Google Scholar 

  44. Snider WD, Johnson EM Jr (1989) Neurotrophic molecules. Ann Neurol 26:489–506

    Article  PubMed  CAS  Google Scholar 

  45. Tafreshi AP, Zhou XF, Rush RA (1998) Endogenous nerve growth factor and neurotrophin-3 act simultaneously to ensure the survival of postnatal sympathetic neurons in vitro. Neuroscience 83:373–380

    Article  PubMed  CAS  Google Scholar 

  46. Takeda A, Onodera H, Sugimoto A et al (1993) Coordinated expression of messenger RNAs for nerve growth factor, brain-derived neurotrophic factor and neurotrophin-3 in the rat hippocampus following transient forebrain ischemia. Neuroscience 55:23–31

    Article  PubMed  CAS  Google Scholar 

  47. Taniuchi M, Clark HB, Johnson EM Jr (1986) Induction of nerve growth factor receptor in Schwann cells after axotomy. Proc Natl Acad Sci USA 83:4094–4098

    Article  PubMed  CAS  Google Scholar 

  48. Thoenen H, Barde YA (1980) Physiology of nerve growth factor. Physiol Rev 60:1284–1335

    PubMed  CAS  Google Scholar 

  49. Tuszynski MH, Gabriel K, Gage FH, Suhr S, Meyer S, Rosetti A (1996) Nerve growth factor delivery by gene transfer induces differential outgrowth of sensory, motor, and noradrenergic neurites after adult spinal cord injury. Exp Neurol 137:157–173

    Article  PubMed  CAS  Google Scholar 

  50. Wang SD, Goldberger ME, Murray M (1991) Plasticity of spinal systems after unilateral lumbosacral dorsal rhizotomy in the adult rat. J Comp Neurol 304:555–568

    Article  PubMed  CAS  Google Scholar 

  51. Wang XJ, Kong KM, Qi WL (2002) Influence of acupuncture on the expression of BDNF and TrkB in chronic spinal cord injury of rats. J Shantou Univ Med Coll 15:20–22

    CAS  Google Scholar 

  52. Wang TT, Yuan Y, Kang Y et al (2005) Effects of acupuncture on the expression of glial cell line-derived neurotrophic factor (GDNF) and basic fibroblast growth factor (FGF-2/bFGF) in the left sixth lumbar dorsal root ganglion following removal of adjacent dorsal root ganglia. Neurosci Lett 382:236–241

    Article  PubMed  CAS  Google Scholar 

  53. Wang TT, Yuan WL, Ke Q et al (2006) Effects of electro-acupuncture on the expression of c-jun and c-fos in spared dorsal root ganglion and associated spinal laminae following removal of adjacent dorsal root ganglia in cats. Neuroscience 140:1169–76

    Article  PubMed  CAS  Google Scholar 

  54. Wright DE, Zhou L, Kucera J et al (1997) Introduction of a neurotrophin-3 transgene into muscle selectively rescues proprioceptive neurons in mice lacking endogenous neurotrophin-3. Neuron 19:503–517

    Article  PubMed  CAS  Google Scholar 

  55. Wu LF, Xiao RY (1992) The effect of acupuncture on plasticity of cat spinal cord: quantitative electron microscopic study. J Chin Med 3:1–8

    Google Scholar 

  56. Wu LF, Li JL, Xu J et al (1993) The effect of acupuncture on plasticity of spinal Clarke’s nucleus synaptic terminals. J WCUMS 24:117–121

    CAS  Google Scholar 

  57. Wu LF, Bao TR, Liao DY (1994) The effect of acupuncture on the extract derived from spinal lamina II on the neurite growth of DRG. Chin J Anat 17:176

    Google Scholar 

  58. Xiao RY, Wu LF, Li GR (1989) Influence of acupuncture on the plasticity of lamina II of cat spinal dorsal horn-a quantitative ultrastructure study. Chin J Neuroanat 5:149–155

    Google Scholar 

  59. Xue QS, Wu LF, Bao TR (1994) Electro-acupuncture stimulation enhances the neurite outgrowth promoting effect of tissue extract from Clarke’s nucleus of spared root in cat. Chin J Neurosci 1:13–18

    Google Scholar 

  60. Yankner BA, Shooter EM (1982) The biology and mechanism of action of nerve growth factor. Annu Rev Biochem 51:845–868

    Article  PubMed  CAS  Google Scholar 

  61. Zhang B, Goldberger ME, Wu LF, Murray M (1995) Plasticity of complex terminals in lamina II in partially deafferented spinal cord: the cat spared root preparation. Exp Neurol 132:186–193

    Article  PubMed  CAS  Google Scholar 

  62. Zhang J, Wu LF, Liao DY et al (1997) Acupoints specificity in promoting the plasticity of cat spinal lamina II with acupuncture-quantitative EM study. J WCUMS 28:247–250

    CAS  Google Scholar 

  63. Zhang XS, Zhou X, Wu LF et al (1998) The effect of electroacupuncture stimulation on neurotrophic substance in cat spinal dorsal horn. J WCUMS 29:264–268

    CAS  Google Scholar 

  64. Zhou XF, Rush RA (1996) Endogenous brain-derived neurotrophic factor is anterogradely transported in primary sensory neurons. Neuroscience 74:945–951

    PubMed  CAS  Google Scholar 

  65. Zhou XF, Parada LF, Soppet D, Rush RA (1993) Distribution of trkB tyrosine immunoreactivity in the rat central nervous system. Brain Res 622:63–70

    Article  PubMed  CAS  Google Scholar 

  66. Zhou XF, Deng YS, Chie E et al (1999) Satellite-cell-derived nerve growth factor and neurotrophin-3 are involved in noradrenergic sprouting in the dorsal root ganglia following peripheral nerve injury in the rat. Eur J Neurosci 5:1711–1722

    Article  Google Scholar 

  67. Zhou XF, Deng YS, Xian CJ et al (2000) Neurotrophins from dorsal root ganglia trigger allodynia after spinal nerve injury in rats. Eur J Neurosci 12:100–105

    Article  PubMed  CAS  Google Scholar 

  68. Zhou L, Baumgartner BJ, Hill-Felberg SJ et al (2003) Neurotrophin-3 expressed in situ induces axonal plasticity in the adult injured spinal cord. J Neurosci 23:1424–1431

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the grants from the National Science Foundation of China (No. 30260125) and the CMB Grant (CMB-00-72). Prof. Wei-Yi Ong helped with editing of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ting-Hua Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, TH., Wang, XY., Li, XL. et al. Effect of Electroacupuncture on Neurotrophin Expression in Cat Spinal Cord after Partial Dorsal Rhizotomy. Neurochem Res 32, 1415–1422 (2007). https://doi.org/10.1007/s11064-007-9326-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-007-9326-9

Keywords

Navigation