Skip to main content
Log in

Effects of Chronic Haloperidol and/or Clozapine on Oxidative Stress Parameters in Rat Brain

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Decreased antioxidant activity is considered as one of the causes of tardive dyskinesia in schizophrenic patients in a prolonged neuroleptic treatment course. Haloperidol (HAL) has been hypothesized to increase oxidative stress, while clozapine (CLO) would produce less oxidative damage. The objective was to determine whether CLO for 28 days could reverse or attenuate HAL-induced oxidative damage in animals previously treated with HAL for 28 days. HAL significantly increased thiobarbituric acid reactive substances levels in the cortex (CX) and striatum and increased protein carbonyls in hippocampus (HP) and CX and this was not attenuated by CLO treatment. In the total radical trapping antioxidant parameter assay there was a decrease in the HP total antioxidant potential induced by HAL and by treatment with HAL + CLO. Our findings demonstrated that the atypical antipsychotic CLO could not revert oxidative damage caused by HAL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Morgenstern H, Glazer WM (1993) Identifying risk factors for tardive dyskinesia among long-term outpatients maintained with neuroleptic medications. Arch Gen Psychiatry 50:723–733

    PubMed  CAS  Google Scholar 

  2. Raja M (1995) Tardive dystonia: prevalence, risk factors and comparison with tardive dyskinesia in a population of two hundred acute psychiatric in patients. Eur Arch Psychiatry Clin Neurosci 245:145–151

    Article  PubMed  CAS  Google Scholar 

  3. Andreassen OA et al (2003) Oral dyskinesias and histopathological alterations in substantia nigra after long-term haloperidol treatment of old rats. Neuroscience 122:717–725

    Article  PubMed  CAS  Google Scholar 

  4. Sachdev P, Saharov T, Cathcart S (1999) The preventive role of antioxidants (selegiline and vitamin E) in a rat model of tardive dyskinesia. Biol Psychiatry 46:1672–1681

    Article  PubMed  CAS  Google Scholar 

  5. Jeste DV, Lacro JP, Baily A et al (1999) Lower incidence of tardive dyskinesia with rispiridone compared with haloperidol in older patients. J Am Geriatr Soc 47:716–719

    PubMed  CAS  Google Scholar 

  6. Paulson GW (2005) Historical comments on tardive dyskinesia: a neurologist’s perspective. J Clin Psychiatry 66:260–264

    Article  PubMed  Google Scholar 

  7. Correll CU, Leucht S, Kane JM (2004) Lower risk for tardive dyskinesia associated with second-generation antipsychotics: a systematic review of 1-year studies. Am J Psychiatry 161:414–425

    Article  PubMed  Google Scholar 

  8. Westerink BHC, Vries JB (1989) On the mechanism of neuroleptic induced increase in striatal dopamine release: brain dialysis provides direct evidence of mediation by autoreceptors localized on nerve terminals. Neurosci Lett 99:197–202

    Article  PubMed  CAS  Google Scholar 

  9. Wayner DDM, Burton GW, Ingold KU et al (1985) Quantitative measurement of the total, peroxyl radical-trapping antioxidant capability of human blood plasma by controlled peroxidation. The important contribution made by plasma proteins. FEBS Lett 187:33–37

    Article  PubMed  CAS  Google Scholar 

  10. Yokoyama H, Kasai N, Ueda Y et al (1998) In vivo analysis of hydrogen peroxide and lipid radicals in the striatum of rats under long-term administration of a neuroleptic. Free Radic Biol Med 26:1056–1060

    Article  Google Scholar 

  11. Tsai G, Goff DC, Chang RW et al (1998) Markers of glutamatergic neurotransmission and oxidative stress associated with tardive dyskinesia. Am J Psychiatry 155:1207–1213

    PubMed  CAS  Google Scholar 

  12. Gupta S, Mosnik D, Black DW et al (1999) Tardive dyskinesia: review of treatments past, present, and future. Ann Clin Psychiatry 11:257–266

    Article  PubMed  CAS  Google Scholar 

  13. Soares KV, McGrath JJ (1999) The treatment of tardive dyskinesia—a systematic review and meta-analysis. Schizophr Res 39:1–16

    Article  PubMed  CAS  Google Scholar 

  14. Elkashef AM, Wyatt RJ (1999) Tardive dyskinesia: possible involvement of free radicals and treatment with vitamin E. Schizophr Bull 25:731–740

    PubMed  CAS  Google Scholar 

  15. Andreassen OA, Jùrgensenb HA (2000) Neurotoxicity associated with neuroleptic-induced oral dyskinesias in rats: implications for tardive dyskinesia? Prog Neurobiol 61:525–541

    Article  PubMed  CAS  Google Scholar 

  16. Vilner BJ, DeCosta BR, Bowen WD (1995) Cytotoxic effects of sigma ligants: sigma receptor mediated alteration in cellular morphology and viability. J Neurosci 15:117–134

    PubMed  CAS  Google Scholar 

  17. Polydoro M, Schröder N, Noemia M et al (2004) Haloperidol- and clozapine-induced oxidative stress in the rat brain. Pharmacol Biochem Behavior 78:751–756

    Article  CAS  Google Scholar 

  18. Reinke A, Martins MR, Lima MS et al (2004) Haloperidol and clozapine, but not olanzapine, induces oxidative stress in rat brain. Neurosci Lett 372:157–160

    Article  PubMed  CAS  Google Scholar 

  19. Creese I, Burt D, Snyder SH (1976) Dopamine receptor binding predicts clinical and pharmacological potencies of antischizophrenic drugs. Science 192:481–483

    Article  PubMed  CAS  Google Scholar 

  20. Fang J, Lai CT, Yu PH (1996) Neurotoxic effect of 4-(4-chlorophenyl)-1-(4-(4-fluorophenyl)-4-oxobutyl(-pyridinium) (HP+), a major metabolite of haloperidol in the dopaminergic system in vitro and in vivo. Biog Amines 12:125–134

    Google Scholar 

  21. See RE (1991) Striatal dopamine metabolism increases during long-term haloperidol administration in rats but shows tolerance in response to acute challenge with raclopride. Neurosci Lett 129:265–268

    Article  PubMed  CAS  Google Scholar 

  22. Shivakumar BR, Ravindranath V (1993) Oxidative stress and thiol modification induced by chronic administration of haloperidol. J Pharmacol Exp Ther 265:1137–1141

    PubMed  CAS  Google Scholar 

  23. Tuunainen A, Wahlbeck K, Gilbody S (2002) Newer atypical antipsychotic medication in comparison to clozapine: a systematic review of randomized trials. Schizophr Res 56:1–10

    Article  PubMed  Google Scholar 

  24. Daly DA, Moghaddam B (1993) Actions of clozapine and haloperidol on the extracellular levels of excitotory amino acids in the prefrontal cortex and striatum of conscious rats. Neurosci Lett 152:61–64

    Article  PubMed  CAS  Google Scholar 

  25. Bassitt DP, Louza Neto MR (1998) Clozapine efficacy in tardive dyskinesia in schizophrenic patients. Eur Arch Psychiatry Clin Neurosci 248:209–211

    Article  PubMed  CAS  Google Scholar 

  26. Parikh V, Khan MM, Mahadik SP (2003) Differential effects of antipsychotics on expression of antioxidant enzymes and membrane lipid peroxidation in rat brain. J Psychiatry Res 37:43–51

    Article  Google Scholar 

  27. Gama CS, Salvador M, Andreazza AC et al (2006) Elevated serum superoxide dismutase and thiobarbituric acid reactive substances in schizophrenia: a study of patients treated with haloperidol or clozapine. Prog Neuropsychopharmacol Biol Psychiatry 30:512–515

    Article  PubMed  CAS  Google Scholar 

  28. Draper HH, Hadley M (1990) Malondialdehyde determination as index of lipid peroxidation. Methods Enzymol 186:421–431

    PubMed  CAS  Google Scholar 

  29. Levine RL, Garland D, Oliver CN (1990) Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol 186:464–478

    PubMed  CAS  Google Scholar 

  30. Wayner DDM, Burton GW, Ingold KU et al (1985) Quantitative measurement of the total, peroxyl radical-trapping antioxidant capability of human blood plasma by controlled peroxidation. The important contribution made by plasma proteins. FEBS Lett 187:33–37

    Article  PubMed  CAS  Google Scholar 

  31. Lowry OH, Rosebrough AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  32. Bannister JV, Calaberese L (1987) Assays for SOD. Methods Biochem Anal 32:279–312

    Article  PubMed  CAS  Google Scholar 

  33. Dal-Pizzol F, Klamt F, Bernard EA (2001a) Retinol supplementation induces oxidative stress and modulates antioxidant enzyme activities in rat Sertoli cells. Free Radic Res 34:395–404

    Article  CAS  Google Scholar 

  34. Dal-Pizzol F, Klamt F, Frota MLC Jr et al (2001b) Neonatal iron exposure induces oxidative stress in adult Wistar rat. Dev Brain Res 130:109–114

    Article  CAS  Google Scholar 

  35. Cadet JL, Lohr JB, Jeste DV (1986) Free radicals and tardive dyskinesias. Trends Neurosci 9:107–108

    Article  CAS  Google Scholar 

  36. Creese G, Burt D, Synder SIL (1976) Dopamine receptor binding and pharmacological potencies and antischizophrenic drugs. Science 192:481–483

    Article  PubMed  CAS  Google Scholar 

  37. Coyle JT, Puttfarcken P (1993) Oxidative stress glutamate and neurodegenerative disorders. Science 262:689–695

    Article  PubMed  CAS  Google Scholar 

  38. Ravindranath V, Reed DJ (1990) Glutathione depletion and formation of glutathione protein mixed disulfide following exposure of brain mitochondria to oxidative stress. Biochem Biophys Res Commun 169:150–158

    Article  Google Scholar 

  39. Nielsen EB, Lyon M (1978) Evidence for cell loss in corpus striatum after long-term treatment with a neuroleptic drug (flupenithixol) in rats. Psychopharmacology 59:85–89

    Article  PubMed  CAS  Google Scholar 

  40. Subramanyam B, Rollema H, Woolf T (1990) Identification of a potentially neurotoxic pyridinium metabolite of haloperidol in rats. Biochem Biophys Res Commun 166:238–244

    Article  PubMed  CAS  Google Scholar 

  41. Chang WH, Jann MW, Chiang TS (1996) Plasma haloperidol and reduced haloperidol concentrations in a geriatric population. Neuropsychobiology 33:12–16

    Article  PubMed  CAS  Google Scholar 

  42. Galili R, Mosberg, Gil-Ad I, Weizman A (2000) Haloperidol-induced neurotoxicity—possible implications for tardive dyskinesia. J Neural Transm 107(4):479–490

  43. de Leon J, Moral L, Camunas C (1991) Clozapine and jaw dyskinesia: a case report. J Clin Psychiatry 52:494–495

    PubMed  Google Scholar 

  44. Arnaiz SL, Coronel MF, Boveris A (1999) Nitric oxide, superoxide and hydrogen peroxide production in brain mitochondria after haloperidol treatment. Nitric Oxide 3:235–243

    Article  PubMed  CAS  Google Scholar 

  45. Dal-Pizzol F, Klamt F, Bernard EA et al (2001) Retinol supplementation induces oxidative stress and modulates antioxidant enzyme activities in rat Sertoli cells. Free Radic Res 34:395–404

    Article  PubMed  CAS  Google Scholar 

  46. Dal-Pizzol F, Klamt F, Frota Jr MLC et al (2001) Neonatal iron exposure induces oxidative stress in adult Wistar rat. Dev Brain Res 130:109–114

    Article  CAS  Google Scholar 

  47. Dal-Pizzol F, Klamt F, Vianna MMR et al (2000) Lipid peroxidation in hippocampus early and late after status epilepticus induced by pilocarpine or kainic acidin Wistar rats. Neurosci Lett 291:179–182

    Article  PubMed  CAS  Google Scholar 

  48. Polydoro M, Schröder N, Noemia MM et al (2004) Haloperidol- and clozapine-induced oxidative stress in the rat brain. Pharmacol Biochem Behav 78:751–756

    Article  PubMed  CAS  Google Scholar 

  49. Desco M, Gispert JD, Reig S et al (2003) Cerebral metabolic patterns in chronic and recent-onset schizophrenia. Psychiatry Res 122:125–135

    Article  PubMed  Google Scholar 

  50. Halliwell B, Gutteridge JMC (1989) Lipid peroxidation: a radical chain reaction. In: Free radicals biology and medicine, Oxford University Press, New York, pp 188–276

  51. Phillis J (1994) ‘‘A radical’’ view of cerebral ischemic injury. Prog Neurobiol 42:441–448

    Article  PubMed  CAS  Google Scholar 

  52. Frederickson CJ, Cuajungco CJ, Labuda J (2002) Nitric oxide causes apparent release of zinc from presynaptic boutons. Neuroscience 115:471–474

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from CNPq, FAPESC, Instituto Cérebro e Mente and UNESC (Brazil).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Quevedo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agostinho, F.R., Jornada, L.K., Schröder, N. et al. Effects of Chronic Haloperidol and/or Clozapine on Oxidative Stress Parameters in Rat Brain. Neurochem Res 32, 1343–1350 (2007). https://doi.org/10.1007/s11064-007-9311-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-007-9311-3

Keywords

Navigation