Skip to main content

Advertisement

Log in

The Study of Golgi Apparatus in Alzheimer’s Disease

  • Overview
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Alzheimer’s disease is an irreversible, progressive neurodegenerative disorder leading invariably to death, usually within 7–10 years after diagnosis and is the leading cause of dementia in the elderly. Not only is Alzheimer’s disease a tragic disease in which people suffer from neurodegeneration in the years to come, it also becomes an incredible burden on the public health system. However, there is currently no effective treatment to halt the progression or prevent the onset of Alzheimer’s disease. This is partly due to the fact that the complex pathophysiology of Alzheimer’s disease is not yet completely understood. Recently, Golgi apparatus is found to play an important role in Alzheimer’s disease. In this review, we discuss the changes of Golgi apparatus during clinical progression and pathological development of Alzheimer’s disease. First, changes of Golgi apparatus size in Alzheimer’s disease are summarized. We then address the role of Golgi apparatus in the neuropathology of Alzheimer’s disease. Finally, the role of Golgi apparatus in the pathogenesis of Alzheimer’s disease is discussed. Understanding the contribution of Golgi apparatus dysfunction to Alzheimer’s disease and its pathophysiological basis will significantly impact our ability to develop more effective therapies for Alzheimer’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

Aβ:

amyloid β-protein

AD:

Alzheimer’s disease

APP:

amyloid-beta precursor protein

BACE:

beta-site APP-cleaving enzyme

CTFs:

C-terminal fragments

ER:

endoplasmic reticulum

ERGIC:

ER-Golgi intermediate compartment

FAD:

familial Alzheimer’s disease

GA:

Golgi apparatus

iAbeta:

intracellular Abeta

MCI:

mild cognitive impairment

MMN:

the medial mamillary nucleus

NBM:

nucleus basalis of Meynert

NCI:

no cognitive impairment

NFTs:

neurofibrillary tangles

PM:

plasma membrane

PHFs:

paired helical filaments

PS:

Presenilin

SorLA:

Sorting protein-related receptor

SPs:

“senile” plaques

TGN:

trans-Golgi network

TMN:

tuberomamillary nucleus

VDB:

the vertical limb of the diagonal band of Broca

References

  1. Cruz JC, Tsai LH (2004) Cdk5 deregulation in the pathogenesis of Alzheimer’s disease. Trends Mol Med 10(9):452–8

    Article  PubMed  CAS  Google Scholar 

  2. Yesavage JA, O’Hara R, Kraemer H et al (2002) Modeling the prevalence and incidence of Alzheimer’s disease and mild cognitive impairment. J Psychiatr Res 36(5):281–6

    Article  PubMed  Google Scholar 

  3. Machamer CE (2003) Golgi disassembly in apoptosis: cause or effect? Trends Cell Biol 13(6):279–81

    Article  PubMed  CAS  Google Scholar 

  4. Rios RM, Bornens M (2003) The Golgi apparatus at the cell centre. Curr Opin Cell Biol. 15:60–66

    Article  PubMed  CAS  Google Scholar 

  5. Gonatas NK (1997) The Golgi apparatus in disease. In: Berger EG, Roth J (eds) The Golgi apparatus. Birkhauser Verlag, Basel, pp. 247–273

    Google Scholar 

  6. Swaab DF, Dubelaar EJ, Scherder EJ et al (2003) Therapeutic strategies for Alzheimer disease: focus on neuronal reactivation of metabolically impaired neurons. Alzheimer Dis Assoc Disord 17(Suppl 4):S114–22

    Article  PubMed  Google Scholar 

  7. Ishunina TA, Swaab DF (2003) Increased neuronal metabolic activity and estrogen receptors in the vertical limb of the diagonal band of Broca in Alzheimer’s disease: relation to sex and aging. Exp Neurol 183(1):159–72

    Article  PubMed  CAS  Google Scholar 

  8. Hock C, Heese K, Hulette C et al (2000) Region-specific neurotrophin imbalances in Alzheimer disease: decreased levels of brain-derived neurotrophic factor and increased levels of nerve growth factor in hippocampus and cortical areas. Arch Neurol 57(6):846–51

    Article  PubMed  CAS  Google Scholar 

  9. Dubelaar EJ, Mufson EJ, ter Meulen WG et al (2006) Increased metabolic activity in nucleus basalis of Meynert neurons in elderly individuals with mild cognitive impairment as indicated by the size of the Golgi apparatus. J Neuropathol Exp Neurol 65(3):257–66

    PubMed  Google Scholar 

  10. Dubelaar EJ, Verwer RW, Hofman MA et al (2004) ApoE epsilon4 genotype is accompanied by lower metabolic activity in nucleus basalis of Meynert neurons in Alzheimer patients and controls as indicated by the size of the Golgi apparatus. J Neuropathol Exp Neurol 63(2):159–69

    PubMed  CAS  Google Scholar 

  11. Ishunina TA, Kamphorst W, Swaab DF (2003) Changes in metabolic activity and estrogen receptors in the human medial mamillary nucleus: relation to sex, aging and Alzheimer’s disease. Neurobiol Aging 24(6):817–28

    Article  PubMed  CAS  Google Scholar 

  12. Tamboli IY, Prager K, Barth E (2005) Inhibition of glycosphingolipid biosynthesis reduces secretion of the beta-amyloid precursor protein and amyloid beta-peptide. J Biol Chem 280(30):28110–7

    Article  PubMed  CAS  Google Scholar 

  13. Biederer T, Cao X, Sudhof TC et al (2002) Regulation of APP-dependent transcription complexes by Mint/X11s: differential functions of Mint isoforms. J Neurosci 22(17):7340–51

    PubMed  CAS  Google Scholar 

  14. Andersen OM, Reiche J, Schmidt V (2005) Neuronal sorting protein-related receptor sorLA/LR11 regulates processing of the amyloid precursor protein. Proc Natl Acad Sci USA 102(38):13461–6

    Article  PubMed  CAS  Google Scholar 

  15. Andersen OM, Schmidt V, Spoelgen R et al (2006) Molecular dissection of the interaction between amyloid precursor protein and its neuronal trafficking receptor SorLA/LR11. Biochemistry 45(8):2618–28

    Article  PubMed  CAS  Google Scholar 

  16. Spoelgen R, von Arnim CA, Thomas AV et al (2006) Interaction of the cytosolic domains of sorLA/LR11 with the amyloid precursor protein (APP) and beta-secretase beta-site APP-cleaving enzyme. J Neurosci 26(2):418–28

    Article  PubMed  CAS  Google Scholar 

  17. Suga K, Saito A, Tomiyama T et al (2005) syntaxin5 interacts specifically with presenilin holoproteins and affects processing of betaAPP in neuronal cells. J Neurochem 94(2):425–39

    Article  PubMed  CAS  Google Scholar 

  18. Suga K, Tomiyama T, Mori H et al (2004) syntaxin5 interacts with presenilin holoproteins, but not with their N- or C-terminal fragments, and affects beta-amyloid peptide production. Biochem J 381(Pt 3):619–28

    PubMed  CAS  Google Scholar 

  19. Takahashi RH, Nam EE, Edgar M et al (2002) Alzheimer beta-amyloid peptides: normal and abnormal localization. Histol Histopathol 17(1):239–46

    PubMed  CAS  Google Scholar 

  20. Annaert WG, Levesque L, Craessaerts K et al (1999) Presenilin 1 controls gamma-secretase processing of amyloid precursor protein in pre-golgi compartments of hippocampal neurons. J Cell Biol 147(2):277–94

    Article  PubMed  CAS  Google Scholar 

  21. Rechards M, Xia W, Oorschot VM et al (2003) Presenilin-1 exists in both pre- and post-Golgi compartments and recycles via COPI-coated membranes. Traffic 4(8):553–65

    PubMed  CAS  Google Scholar 

  22. Greenfield JP, Tsai J, Gouras GK et al (1999) Endoplasmic reticulum and trans-Golgi network generate distinct populations of Alzheimer beta-amyloid peptides. Proc Natl Acad Sci USA 96(2):742–7

    Article  PubMed  CAS  Google Scholar 

  23. Hama E, Shirotani K, Iwata N et al (2004) Effects of neprilysin chimeric proteins targeted to subcellular compartments on amyloid beta peptide clearance in primary neurons. J Biol Chem 279(29):30259–64

    Article  PubMed  CAS  Google Scholar 

  24. Sun X, Cole GM, Chu T et al (2002) Intracellular Abeta is increased by okadaic acid exposure in transfected neuronal and non-neuronal cell lines. Neurobiol Aging 23(2):195–203

    Article  PubMed  CAS  Google Scholar 

  25. Takeda K, Araki W, Tabira T (2004) Enhanced generation of intracellular Abeta42 amyloid peptide by mutation of presenilins PS1 and PS2. Eur J Neurosci 19(2):258–264

    Article  PubMed  Google Scholar 

  26. Lopez EM, Bell KF, Ribeiro-da-Silva A et al (2004) Early changes in neurons of the hippocampus and neocortex in transgenic rats expressing intracellular human a-beta. J Alzheimers Dis 6(4):421–31

    PubMed  CAS  Google Scholar 

  27. Tabira T, Chui DH, Kuroda S (2002) Significance of intracellular Abeta42 accumulation in Alzheimer’s disease. Front Biosci 7:a44–9

    Article  PubMed  CAS  Google Scholar 

  28. Echeverria V, Cuello AC (2002) Intracellular A-beta amyloid, a sign for worse things to come?. Mol Neurobiol 26(2–3):299–316

    Article  PubMed  CAS  Google Scholar 

  29. Shiba T, Kametaka S, Kawasaki M et al (2004) Insights into the phosphoregulation of beta-secretase sorting signal by the VHS domain of GGA1. Traffic 5(6):437–48

    Article  PubMed  CAS  Google Scholar 

  30. Vassar R, Bennett BD, Babu-Khan S et al (1999) Beta-secretase cleavage of Alzheimer’s amyloid precursor protein by the transmembrane aspartic protease BACE. Science 286(5440):735–41

    Article  PubMed  CAS  Google Scholar 

  31. Yan R, Han P, Miao H et al (2001) The transmembrane domain of the Alzheimer’s beta-secretase (BACE1) determines its late Golgi localization and access to beta -amyloid precursor protein (APP) substrate. J Biol Chem 276(39):36788–96

    Article  PubMed  CAS  Google Scholar 

  32. Huse JT, Liu K, Pijak DS et al (2002) Beta-secretase processing in the trans-Golgi network preferentially generates truncated amyloid species that accumulate in Alzheimer’s disease brain. J Biol Chem 277(18):16278–84

    Article  PubMed  CAS  Google Scholar 

  33. Fluhrer R, Capell A, Westmeyer G et al (2002) A non-amyloidogenic function of BACE-2 in the secretory pathway. J Neurochem 81(5):1011–20

    Article  PubMed  CAS  Google Scholar 

  34. Baulac S, LaVoie MJ, Kimberly WT et al (2003) Functional gamma-secretase complex assembly in Golgi/trans-Golgi network: interactions among presenilin, nicastrin, Aph1, Pen-2, and gamma-secretase substrates. Neurobiol Dis 14(2):194–204

    Article  PubMed  CAS  Google Scholar 

  35. Wrigley JD, Schurov I, Nunn EJ et al (2005) Functional overexpression of gamma-secretase reveals protease-independent trafficking functions and a critical role of lipids for protease activity. J Biol Chem 280(13):12523–35

    Article  PubMed  CAS  Google Scholar 

  36. Tomita T, Watabiki T, Takikawa R et al (2001) The first proline of PALP motif at the C terminus of presenilins is obligatory for stabilization, complex formation, and gamma-secretase activities of presenilins. J Biol Chem 276(35):33273–81

    Article  PubMed  CAS  Google Scholar 

  37. Siman R, Velji J (2003) Localization of presenilin-nicastrin complexes and gamma-secretase activity to the trans-Golgi network. J Neurochem 84(5):1143–53

    Article  PubMed  CAS  Google Scholar 

  38. Cupers P, Bentahir M, Craessaerts K et al (2001) The discrepancy between presenilin subcellular localization and gamma-secretase processing of amyloid precursor protein. J Cell Biol 154(4):731–40

    Article  PubMed  CAS  Google Scholar 

  39. Kaether C, Lammich S, Edbauer D et al (2002 Presenilin-1 affects trafficking and processing of betaAPP and is targeted in a complex with nicastrin to the plasma membrane. J Cell Biol 158(3):551–61

    Article  PubMed  CAS  Google Scholar 

  40. Kasa P, Papp H, Pakaski M (2001) Presenilin-1 and its N-terminal and C-terminal fragments are transported in the sciatic nerve of rat. Brain Res 909(1–2):159–69

    Article  PubMed  CAS  Google Scholar 

  41. Xia W, Ray WJ, Ostaszewski BL et al (2000) Presenilin complexes with the C-terminal fragments of amyloid precursor protein at the sites of amyloid beta-protein generation. Proc Natl Acad Sci USA 97(16):9299–304

    Article  PubMed  CAS  Google Scholar 

  42. Rechards M, Xia W, Oorschot V et al (2006) Presenilin-1-mediated retention of APP derivatives in early biosynthetic compartments. Traffic 7(3):354–64

    Article  PubMed  CAS  Google Scholar 

  43. Yang DS, Tandon A, Chen F et al (2002) Mature glycosylation and trafficking of nicastrin modulate its binding to presenilins. J Biol Chem 277(31):28135–42

    Article  PubMed  CAS  Google Scholar 

  44. Leem JY, Vijayan S, Han P et al (2002) Presenilin 1 is required for maturation and cell surface accumulation of nicastrin. J Biol Chem 277(21):19236–40

    Article  PubMed  CAS  Google Scholar 

  45. Herreman A, Van Gassen G, Bentahir M et al (2003) gamma-Secretase activity requires the presenilin-dependent trafficking of nicastrin through the Golgi apparatus but not its complex glycosylation. J Cell Sci 116(Pt 6):1127–36

    Article  PubMed  CAS  Google Scholar 

  46. Yu G, Nishimura M, Arawaka S et al (2000) Nicastrin modulates presenilin-mediated notch/glp-1 signal transduction and betaAPP processing. Nature 407(6800):48–54

    Article  PubMed  CAS  Google Scholar 

  47. Gu Y, Chen F, Sanjo N et al (2003) APH-1 interacts with mature and immature forms of presenilins and nicastrin and may play a role in maturation of presenilin.nicastrin complexes. J Biol Chem 278(9):7374–80

    Article  PubMed  CAS  Google Scholar 

  48. Niimura M, Isoo N, Takasugi N et al (2005) Aph-1 contributes to the stabilization and trafficking of the gamma-secretase complex through mechanisms involving intermolecular and intramolecular interactions. J Biol Chem 280(13):12967–75

    Article  PubMed  CAS  Google Scholar 

  49. Wang H, Luo WJ, Zhang YW et al (2004) Presenilins and gamma-secretase inhibitors affect intracellular trafficking and cell surface localization of the gamma-secretase complex components. J Biol Chem 279(39):40560–6

    Article  PubMed  CAS  Google Scholar 

  50. Kawamata T, Taniguchi T, Mukai H et al (1998) A protein kinase, PKN, accumulates in Alzheimer neurofibrillary tangles and associated endoplasmic reticulum-derived vesicles and phosphorylates tau protein. J Neurosci 18(18):7402–10

    PubMed  CAS  Google Scholar 

  51. Elyaman W, Yardin C, Hugon J (2002) Involvement of glycogen synthase kinase-3beta and tau phosphorylation in neuronal Golgi disassembly. J Neurochem 81(4):870–80

    Article  PubMed  CAS  Google Scholar 

  52. Grieb P, Gordon-Krajcer W, Frontczak-Baniewicz M et al (2004) 2-deoxyglucose induces beta-APP overexpression, tau hyperphosphorylation and expansion of the trans-part of the Golgi complex in rat cerebral cortex. Acta Neurobiol Exp (Wars) 64(4):491–502

    Google Scholar 

  53. Liazoghli D, Perreault S, Micheva KD et al (2005) Fragmentation of the Golgi apparatus induced by the overexpression of wild-type and mutant human tau forms in neurons. Am J Pathol 166(5):1499–514

    PubMed  CAS  Google Scholar 

  54. Tanemura K, Murayama M, Akagi T et al (2002) Neurodegeneration with tau accumulation in a transgenic mouse expressing V337M human tau. J Neurosci 22(1):133–41

    PubMed  CAS  Google Scholar 

  55. Stamer K, Vogel R, Thies E et al (2002) Tau blocks traffic of organelles, neurofilaments, and APP vesicles in neurons and enhances oxidative stress. J Cell Biol 156(6):1051–63

    Article  PubMed  CAS  Google Scholar 

  56. Zhao Z, Ksiezak-Reding H, Wang J et al (2005) Expression of tau reduces secretion of Abeta without altering the amyloid precursor protein content in CHOsw cells. FEBS Lett 579(10):2119–24

    Article  PubMed  CAS  Google Scholar 

  57. Campbell WA, Iskandar MK, Reed ML et al (2002) Endoproteolysis of presenilin in vitro: inhibition by gamma-secretase inhibitors. Biochemistry 41(10):3372–9

    Article  PubMed  CAS  Google Scholar 

  58. Petanceska SS, Seeger M, Checler F et al (2000) Mutant presenilin 1 increases the levels of Alzheimer amyloid beta-peptide Abeta42 in late compartments of the constitutive secretory pathway. J Neurochem 74(5):1878–84

    Article  PubMed  CAS  Google Scholar 

  59. Sudoh S, Hua G, Kawamura Y et al (2000) Intracellular site of gamma-secretase cleavage for Abeta42 generation in neuro 2a cells harbouring a presenilin 1 mutation. Eur J Biochem 267(7):2036–45

    Article  PubMed  CAS  Google Scholar 

  60. Cai D, Leem JY, Greenfield JP et al (2003) Presenilin-1 regulates intracellular trafficking and cell surface delivery of beta-amyloid precursor protein. J Biol Chem 278(5):3446–54

    Article  PubMed  CAS  Google Scholar 

  61. Kametani F, Usami M, Tanaka K et al (2004) Mutant presenilin (A260V) affects Rab8 in PC12D cell. Neurochem Int 44(5):313–20

    Article  PubMed  CAS  Google Scholar 

  62. Farquhar MJ, Gray CW, Breen KC et al (2003) The over-expression of the wild type or mutant forms of the presenilin-1 protein alters glycoprotein processing in a human neuroblastoma cell line. Neurosci Lett 346(1–2):53–6

    Article  PubMed  CAS  Google Scholar 

  63. Figueroa DJ, Morris JA, Ma L et al (2002) Presenilin-dependent gamma-secretase activity modulates neurite outgrowth. Neurobiol Dis 9(1):49–60

    Article  PubMed  CAS  Google Scholar 

  64. Cai D, Zhong M, Wang R et al (2006) Phospholipase D1 corrects impaired betaAPP trafficking and neurite outgrowth in familial Alzheimer’s disease-linked presenilin-1 mutant neurons. Proc Natl Acad Sci USA 103(6):1936–40

    Article  PubMed  CAS  Google Scholar 

  65. Cai D, Netzer WJ, Zhong M et al (2006) Presenilin-1 uses phospholipase D1 as a negative regulator of beta-amyloid formation. Proc Natl Acad Sci USA 103(6):1941–6

    Article  PubMed  CAS  Google Scholar 

  66. Culvenor JG, Evin G, Cooney MA et al (2000) Presenilin 2 expression in neuronal cells: induction during differentiation of embryonic carcinoma cells. Exp Cell Res 255(2):192–206

    Article  PubMed  CAS  Google Scholar 

  67. Tekirian TL, Merriam DE, Marshansky V et al (2001) Subcellular localization of presenilin 2 endoproteolytic C-terminal fragments. Brain Res Mol Brain Res 96(1–2):14–20

    Article  PubMed  CAS  Google Scholar 

  68. Iwata H, Tomita T, Maruyama K et al (2001) Subcellular compartment and molecular subdomain of beta-amyloid precursor protein relevant to the Abeta 42-promoting effects of Alzheimer mutant presenilin 2. J Biol Chem 276(24):21678–85

    Article  PubMed  CAS  Google Scholar 

  69. Ishunina TA, van Heerikhuize JJ, Ravid R et al (2003) Estrogen receptors and metabolic activity in the human tuberomamillary nucleus: changes in relation to sex, aging and Alzheimer’s disease. Brain Res 988(1–2):84–96

    Article  PubMed  CAS  Google Scholar 

  70. Ishunina TA, Wouda J, Fisser B et al (2002) Sex differences in estrogen receptor alpha and beta expression in vasopressin neurons of the supraoptic nucleus in elderly and Alzheimer’s disease patients: no relationship with cytoskeletal alterations. Brain Res 951(2):322–9

    Article  PubMed  CAS  Google Scholar 

  71. Greenfield JP, Leung LW, Cai D et al (2002) Estrogen lowers Alzheimer beta-amyloid generation by stimulating trans-Golgi network vesicle biogenesis. J Biol Chem 277(14):12128–36

    Article  PubMed  CAS  Google Scholar 

  72. Gasparini L, Gouras GK, Wang R et al (2001) Stimulation of beta-amyloid precursor protein trafficking by insulin reduces intraneuronal beta-amyloid and requires mitogen-activated protein kinase signaling. J Neurosci 21(8):2561–70

    PubMed  CAS  Google Scholar 

  73. Schechter R, Beju D, Miller KE et al (2005) The effect of insulin deficiency on tau and neurofilament in the insulin knockout mouse. Biochem Biophys Res Commun 334(4):979–86

    Article  PubMed  CAS  Google Scholar 

  74. Grieb P, Kryczka T, Fiedorowicz M et al (2004) Expansion of the Golgi apparatus in rat cerebral cortex following intracerebroventricular injections of streptozotocin. Acta Neurobiol Exp (Wars) 64(4):481–9

    Google Scholar 

  75. LaFerla FM (2002) Calcium dyshomeostasis and intracellular signalling in Alzheimer’s disease. Nat Rev Neurosci 3(11):862–72

    Article  PubMed  CAS  Google Scholar 

  76. Pinton P, Pozzan T, Rizzuto R et al (1998) The Golgi apparatus is an inositol 1,4,5-trisphosphate-sensitive Ca2 +  store, with functional properties distinct from those of the endoplasmic reticulum. EMBO J 17(18):5298–308

    Article  PubMed  CAS  Google Scholar 

  77. Leissring MA, Parker I, LaFerla FM (1999) Presenilin-2 mutations modulate amplitude and kinetics of inositol 1, 4,5-trisphosphate-mediated calcium signals. J Biol Chem 274(46):32535–8

    Article  PubMed  CAS  Google Scholar 

  78. Leissring MA, Paul BA, Parker I et al (1999) Alzheimer’s presenilin-1 mutation potentiates inositol 1,4,5-trisphosphate-mediated calcium signaling in Xenopus oocytes. J Neurochem 72(3):1061–8

    Article  PubMed  CAS  Google Scholar 

  79. Zatti G, Burgo A, Giacomello M et al (2006) Presenilin mutations linked to familial Alzheimer’s disease reduce endoplasmic reticulum and Golgi apparatus calcium levels. Cell Calcium 39(6):539–50

    Article  PubMed  CAS  Google Scholar 

  80. Gonatas NK, Stieber A, Gonatas JO (2006) Fragmentation of the Golgi apparatus in neurodegenerative diseases and cell death. J Neurol Sci 246(1–2):21–30

    Article  PubMed  CAS  Google Scholar 

  81. Terro F, Czech C, Esclaire F et al (2002) Neurons overexpressing mutant presenilin-1 are more sensitive to apoptosis induced by endoplasmic reticulum-Golgi stress. J Neurosci Res 69(4):530–9

    Article  PubMed  CAS  Google Scholar 

  82. Zhang Z, Hartmann H, Do VM et al (1998) Destabilization of beta-catenin by mutations in presenilin-1 potentiates neuronal apoptosis. Nature 395(6703):698–702

    Article  PubMed  CAS  Google Scholar 

  83. Lilliehook C, Chan S, Choi EK et al (2002) Calsenilin enhances apoptosis by altering endoplasmic reticulum calcium signaling. Mol Cell Neurosci 19(4):552–9

    Article  PubMed  CAS  Google Scholar 

  84. Coughlan CM, Breen KC (2000) Factors influencing the processing and function of the amyloid beta precursor protein–a potential therapeutic target in Alzheimer’s disease?. Pharmacol Ther 86(2):111–45

    Article  PubMed  CAS  Google Scholar 

  85. Roberds SL, Anderson J, Basi G et al (2001) BACE knockout mice are healthy despite lacking the primary beta-secretase activity in brain: implications for Alzheimer’s disease therapeutics. Hum Mol Genet 10(12):1317–24

    Article  PubMed  CAS  Google Scholar 

  86. Sun X, Tong Y, Qing H et al (2006) Increased BACE1 maturation contributes to the pathogenesis of Alzheimer’s disease in Down syndrome. FASEB J 20(9):1361–8

    Article  PubMed  CAS  Google Scholar 

  87. Sun X, He G, Song W (2006) BACE2, as a novel APP theta-secretase, is not responsible for the pathogenesis of Alzheimer’s disease in Down syndrome. FASEB J 20(9):1369–76

    Article  PubMed  CAS  Google Scholar 

  88. von Arnim CA, Spoelgen R, Peltan ID et al (2006) GA1 acts as a spatial switch altering amyloid precursor protein trafficking and processing. J Neurosci 26(39):9913–22

    Article  Google Scholar 

  89. Gandy S, Doeven MK, Poolman B (2006) Alzheimer disease: presenilin springs a leak. Nat Med 12(10):1121–3

    Article  PubMed  CAS  Google Scholar 

  90. Salehi A, Swaab DF (1999) Diminished neuronal metabolic activity in Alzheimer’s disease. J Neural Transm 106(9–10):955–86

    Article  PubMed  CAS  Google Scholar 

  91. Ishunina TA, Fischer DF, Swaab DF (2006) Estrogen receptor alpha and its splice variants in the hippocampus in aging and Alzheimer’s disease. Neurobiol Aging. 26

  92. Hoyer S (2004) Causes and consequences of disturbances of cerebral glucose metabolism in sporadic Alzheimer disease: therapeutic implications. Adv Exp Med Biol 541:135–52

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liuwang Zeng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, Z., Zeng, L., Huang, Z. et al. The Study of Golgi Apparatus in Alzheimer’s Disease. Neurochem Res 32, 1265–1277 (2007). https://doi.org/10.1007/s11064-007-9302-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-007-9302-4

Keywords

Navigation