Skip to main content

Advertisement

Log in

ADAM23 Plays Multiple Roles in Neuronal Differentiation of P19 Embryonal Carcinoma cells

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

ADAM23, belonging to ADAM (A Disintegrin And Metalloprotease) protein family, is mainly expressed in brain. P19 cells could differentiate into neuroectodermal cell lineage after cell aggregates have been induced by retinoic acid (RA). In this report, we show that the post-transcriptional and post-translational processes of ADAM23 are regulated during the differentiation of P19 cells. In P19-derived neurons, ADAM23 is polarized distributed in the proximal part. To explore the possible roles of ADAM23 during P19 cell neuronal differentiation, ADAM23-RNAi P19 cell lines were established. These transfected cells could differentiate into neurofilament-expression neurons in the absence of RA, whereas wild-type P19 cell can not. These results suggest ADAM23 may play roles in both early and later stage of neuronal differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Seals DF, Courtneidge SA (2003) The ADAMs family of metalloproteases: multidomain proteins with multiple functions. Genes Dev 17:7–30

    Article  PubMed  CAS  Google Scholar 

  2. Watabe-Uchida M, Masuda A, Shimada N et al (2004) Novel metalloprotease-disintegrin, meltrin epsilon (ADAM35), expressed in ephithelial tissues during chick embryogenesis. Dev Dyn 230:557–568

    Article  PubMed  CAS  Google Scholar 

  3. Endo T (1996) ADAM family proteins and cell fusion. Seikagaku 68:1453–1458

    PubMed  CAS  Google Scholar 

  4. Black RA, White JM (1998) ADAMs: focus on the protease domain. Curr Opin Cell Biol 10:654–659

    Article  PubMed  CAS  Google Scholar 

  5. Primakoff P, Myles DG (2000) The ADAM gene family–surface proteins with adhesion and protease activity. Trends Genet 16:83–87

    Article  PubMed  CAS  Google Scholar 

  6. Kärkkäinen I, Rybnikova E, Pelto-Huikko M et al (2000) Metalloprotease-disintegrin (ADAM) genes are widely and differentially expressed in the adult CNS. Mol Cell Neurosci 15:547–560

    Article  PubMed  Google Scholar 

  7. Rooke J, Pan D, Xu T, Rubin GM (1996) KUZ, a conserved metalloprotease-disintegrin protein with two roles in Drosophila neurogenesis. Science 273:1227–1231

    Article  PubMed  CAS  Google Scholar 

  8. Pan DJ, Rubin GM. (1997) Kuzbanian controls proteolytic processing of Notch and mediates lateral inhibition during Drosophila and vertebrate neurogenesis. Cell 90:271–280

    Article  PubMed  CAS  Google Scholar 

  9. Qi HL, Rand MD, Wu XH et al (1999) Processing of the Notch ligand delta by the metalloprotease kuzbanian. Science 283:91–94

    Article  PubMed  CAS  Google Scholar 

  10. Alfandari D, Cousin H, Gaultier A et al (2001) Xenopus ADAM 13 is a metalloprotease required for cranial neural crest-cell migration. Curr Bio 11:918–930

    Article  CAS  Google Scholar 

  11. Fambrough D, Pan DJ, Rubin GM et al (1996) The cell surface metalloprotease disintegrin Kuzbanian is required for axonal extension in Drosophila. Proc Natl Acad Sci USA 93:13233–13238

    Article  PubMed  CAS  Google Scholar 

  12. Hattori M, Osterfield M, Flanagan JG (2000) Regulated cleavage of a contact-mediated axon repellent. Science 289:1360–1365

    Article  PubMed  CAS  Google Scholar 

  13. Sagane K, Ohya Y, Hasegawa Y, Tanaka I (1998) Metalloproteinase-like, disintegrin-like, cysteine-rich proteins MDC2 and MDC3: novel human cellular disintegrins highly expressed in the brain. Biochem J 334:93–98

    PubMed  CAS  Google Scholar 

  14. Cal S, Freije JMP, Lopez JM et al (2000) ADAM 23/MDC3, a human disintegrin that promotes cell adhesion via interaction with the alpha v beta 3 integrin through an RGD-independent mechanism. Mol Bio Cell 11:1457–1469

    CAS  Google Scholar 

  15. Mitchell KJ, Pinson KI, Kelly OG et al (2001) Functional analysis of secreted and transmembrane proteins critical to mouse development. Nat Genet 28:241–249

    Article  PubMed  CAS  Google Scholar 

  16. Leighton PA, Mitchell KJ, Goodrich LV et al (2001) Defining brain wiring patterns and mechanisms through gene trapping in mice. Nature 410:174–179

    Article  PubMed  CAS  Google Scholar 

  17. Sun YP, Deng KJ, Wang F et al (2004) Two novel isoforms of Adam23 expressed in the developmental process of mouse and human brains. Gene 325:171–178

    Article  PubMed  CAS  Google Scholar 

  18. Parnas D, Linial M (1994) P19 Embryonal Carcinoma-Cells Differentiate into Functional-Neurons. J Neurochem 63(Suppl. 1):S89–S89

    Google Scholar 

  19. Angello JC, Stern HM, Hauschka SD (1997) P19 embryonal carcinoma cells: A model system for studying neural tube induction of skeletal myogenesis. Dev Bio 192:93–98

    Article  CAS  Google Scholar 

  20. Wu JX, Adamson ED (1993) Inhibition of Differentiation in P19 Embryonal Carcinoma-Cells by the Expression of Vectors Encoding Truncated or Antisense Egf Receptor. Dev Bio 159:208–222

    Article  Google Scholar 

  21. http://www.scbt.com/protocol_1.php

  22. http://www.scbt.com/protocol_7.php

  23. Goldsmith AP, Gossage SJ, ffrench-Constant C (2004) ADAM23 is a cell-surface glycoprotein expressed by central nervous system neurons. J Neurosci Res 78:647–658

    Article  PubMed  CAS  Google Scholar 

  24. Hamada-Kanazawa M, Ishikawa K, Nomoto K et al (2004) Sox6 overexpression causes cellular aggregation and the neuronal differentiation of P19 embryonic carcinoma cells in the absence of retinoic acid. FEBS Lett 560:192–198

    Article  PubMed  CAS  Google Scholar 

  25. Tang K, Yang J, Gao X et al (2002) Wnt-1 promotes neuronal differentiation and inhibits gliogenesis in P19 cells. Biochem Biophys Res Commun 293:167–173

    Article  PubMed  CAS  Google Scholar 

  26. Andressen C, Arnhold S, Puschmann M et al (1998) Beta 1 integrin deficiency impairs migration and differentiation of mouse embryonic stem cell derived neurons. Neurosci Lett 251:165–168

    Article  PubMed  CAS  Google Scholar 

  27. Esch T, Lemmon V, Banker G (2000) Differential effects of NgCAM and N-cadherin on the development of axons and dendrites by cultured hippocampal neurons. J Neurocytol 29:215–223

    Article  PubMed  CAS  Google Scholar 

  28. Chamak B, Prochiantz A (1989) Influence of extracellular matrix proteins on the expression of neuronal polarity. Development 106:483–491

    PubMed  CAS  Google Scholar 

  29. Teramoto S, Kihara-Negishi F, Sakurai T et al (2005) Classification of neural differentiation-associated genes in P19 embryonal carcinoma cells by their expression patterns induced after cell aggregation and/or retinoic acid treatment. Oncol Rep 14:1231–1238

    PubMed  CAS  Google Scholar 

  30. Wang C, Xia CH, Bian W et al (2006) Cell aggregation-induced FGF8 elevation is essential for P19 cell neural differentiation. Mol Bio Cell 17:3075–3084

    Article  CAS  Google Scholar 

  31. Schmid RS, Anton ES (2003) Role of integrins in the development of the cerebral cortex. Cereb Cortex 13:219–224

    Article  PubMed  Google Scholar 

  32. Coppolino MG, Dedhar S (2000) Bi-directional signal transduction by integrin receptors. Int J Biochem Cell Biol 32:171–188

    Article  PubMed  CAS  Google Scholar 

  33. Pinkstaff JK, Detterich J, Lynch G et al (1999) Integrin subunit gene expression is regionally differentiated in adult brain. J Neurosci 19:1541–1556

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was mainly supported by National Natural Science Foundation of China ((30470974) to Qiao SY, and was supported in part by National Natural Science Foundation of China (90208011, 30300174, 30470856 and 30421005), National Key Basic Research and Development Program of China (2002CB713802 and 2005CB522704) to Jing NH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shouyi Qiao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, Y., Wang, Y., Zhang, J. et al. ADAM23 Plays Multiple Roles in Neuronal Differentiation of P19 Embryonal Carcinoma cells. Neurochem Res 32, 1217–1223 (2007). https://doi.org/10.1007/s11064-007-9293-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-007-9293-1

Keywords

Navigation